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Foreword

We live in an age which is widely referred to as the age of information. Information has a
position of centrality in modern society. Today, it would be hard to live without mobile phones,
computers, fax machines, copiers, TV, radio and other artifacts of information. However, in
our preoccupation with information we tend to lose sight of the fact that information is not
the final destination. What lies beyond information is decision-making. In the final analysis,
information is merely a basis for making rational decisions. From the time we wake up in the
morning until the time we go to bed, we make a multitude of decisions. Most everyday decisions
are made on a subconscious level, but some involve a conscious analysis of consequences of
decisions—an analysis aimed at making a decision which in some sense is better than others.

In large measure, the information age began with the pioneering work of Shannon on
information theory. Shannon’s first presentation of his theory took place in New York in 1946.
As a student at Columbia University, I attended his presentation. I was deeply impressed by
Shannon’s ideas. He opened the door to a new world—the world of information and digital
information processing.

Two years before the debut of information theory, von Neumann and Morgenstern published
a path-breaking book, “Theory of Games and Economic Behavior”. Decision analysis, as we
know it today, is the brain-child of two great minds—von Neumann and Morgenstern—and
other great minds who followed them. The von Neumann-Morgenstern theory was driven by
a quest for a theory which is rigorous, precise and prescriptive. The degree to which von Neu-
mann and Morgenstern have achieved their objective is still a matter of discussion and debate.

Information has many attributes. Among them there are two that stand out in importance—
uncertainty and imprecision. Roughly speaking, uncertainty relates to randomness of infor-
mation while imprecision relates to fuzziness, that is, to unsharpness of class boundaries.
Randomness and fuzziness are distinct phenomena, but more often than not what we observe
is a mixture. The classical, Aristotelian, bivalent logic is the logic of classes with crisp, (sharp)
boundaries. By contrast, fuzzy logic may be viewed as the logic of classes with unsharp
boundaries. In fuzzy logic, everything is or is allowed to be a matter of degree.

Like most theories in science, the von Neumann-Morgenstern theory is based on bivalent
logic. Based as it is on bivalent logic, the von Neumann-Morgenstern theory addresses the
issue of randomness but not that of fuzziness. To deal with randomness, von Neumann and
Morgenstern developed the Expected Utility Theory (EUT). The price of being based on
bivalent logic is proclivity of EUT to counter-intuitive conclusions. The paradoxes of Allais,
Ellsberg and others brought to light serious shortcomings of EUT. In my view, no bivalent-
logic-based theory of decision analysis can be paradox-free.
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xiv Foreword

The first attempt to address the issue of fuzziness in decision analysis was made in the 1972
paper by Bellman and I, “Decision-making in a fuzzy environment”. A key idea in this paper
involves aggregation of a collection of fuzzy goals (criteria) and fuzzy constraints through
conjunction. The issue of uncertainty was not substantively addressed. In a later, 1976 paper,
“The linguistic approach and its application to decision analysis”, I introduced the concepts
of fuzzy Pareto-optimality and linguistic preference relations. Since then, a number of papers
in the literature have addressed the issue of fuzziness in decision analysis.

The book “Fuzzy Multicriteria Decision-Making: Models, Methods and Applications”, or
FMD for short, co-authored by Witold Pedrycz, Petr Ekel and Roberta Parreiras, is the first
comprehensive treatment of both fuzziness and randomness in decision analysis. As such, it
opens the door to construction of far more realistic models of decision problems that can be
constructed through the use of bivalent-logic-based theories. In FMD, employment of fuzzy
set theory reflects a fact of life: the closer one gets to reality the fuzzier it looks.

What one finds in FMD goes far beyond what has appeared in the literature of decision
analysis. Since fuzzy set theory is used extensively in FMD, FMD includes a very thorough
and skillfully-organized exposition of those parts of fuzzy set theory which are of relevance
to decision analysis. An exposition of applications of fuzzy set theory to decision analysis
begins in Chapter 4. In Chapters 4 and 5, principal models of preference relations, among
them models based on the ideas of Wald, Laplace, Savage and Hurwicz, are discussed with
insight and attention to detail. A realistic example involving resource allocation is analyzed.
Chapters 6 and 7 offer a broad panorama of concepts and techniques which have a position
of centrality in the fuzzy-set-theory-based approach to decision analysis. In the main, what
these chapters offer are important generalizations of existing approaches, but there is much
that is new and original. The last two chapters deal with issues which are rarely discussed in
textbooks on decision analysis—group decision-making and consensus formation. Based on
fuzzy set theory, the authors have succeeded in developing significantly more realistic models
of group decision-making and consensus formation that can be found in the literature. What is
presented in these chapters is of relevance to policy-making and societal decision processes.
What should be underscored is that a concept which has a position of centrality in FMD is that
of a fuzzy preference relation. This concept has been an object of discussion in the literature
of decision-analysis, but in FMD it plays a far more important role.

A final comment. There is an important issue in decision-making under uncertainty which
has not received as much attention in the literature as it deserves. The issue is that of decision-
making under second-order uncertainty, that is, uncertainty about uncertainty. Imprecise (un-
certain) probabilities fall into this category. The importance of decision-making with imprecise
probabilities derives from the fact that most real-world probabilities are not known precisely. In
early attempts to deal with imprecise probabilities it was assumed that an imprecise probability
distribution is an element of a convex set. Then, a minimax criterion was employed to find an
optimal solution. A problem with the minimax criterion is that it is much too conservative.
Many variations on the minimax criterion have been suggested, but none has gained wide
acceptance. At this juncture, the problem of decision-making under second-order uncertainty
is far from solution. I presume that this is the reason why the problem of decision-making
under second-order uncertainty is not addressed in Chapter 8.

As a test of a theory to deal with first-order and second-order uncertainties, I should like to
suggest a quartet of problems.

Assume that I am given two boxes, each containing twenty black and white balls.
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Problem l. A ball is picked at random from box 1. If I pick a white ball, I get a1 dollars. If I
pick a black ball, I lose b1 dollars. If I pick a ball at random from box 2, I get a2 dollars if the
ball is white and I lose b2 dollars if the ball is black. I can count the number of white balls and
black balls in each box. Which box should I choose?

In Problem 2, I am shown the boxes for a few seconds, not long enough to count the balls.
I form a perception of the number of white and black balls in each box. These perceptions
lead to perception-based (fuzzy) imprecise probabilities. The question is the same: Which box
should I choose?

In Problem 3, I am given enough time to be able to count the number of white and black
balls, but it is the gains and losses that are perception-based (fuzzy). The question remains the
same.

In Problem 4, probabilities, gains and losses are perception-based (fuzzy). The question
remains the same.

These four problems are representative of problems which decision-makers encounter in
the real world.

The work of Pedrycz, Ekel and Parreiras is a role model of exposition. Carefully worked
out examples are crafted to facilitate understanding. Definitions are carefully formulated and
make reference to earlier work. Exercises at the end of chapters make the book very useful as
a textbook. FMD is highly informative and highly reader-friendly.

In sum, the importance of the work of Pedrycz, Ekel and Parreiras is hard to exaggerate.
However, their work is not intended to be read during lunch hour. FMD requires careful study.
FMD’s wealth of new, original and applicable results makes it a must reading for all who are
concerned with decision analysis. The authors and the publisher, John Wiley, deserve a loud
applause.

Lotfi A. Zadeh
August 23, 2010

Berkeley, CA
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Preface

This book presents a comprehensive, constructive, well-balanced, fuzzy set modeling frame-
work for a timely, challenging, and important area of multicriteria decision-making. It focuses
on ways of representing and handling diverse manifestations of uncertainty and the remark-
ably multicriteria nature of problems encountered in system projects, planning, operation, and
control. The focus of the book is on multiobjective and multiattribute individual and group
decision-making. We stress the hands-on nature of the exposition of the overall material and
the book comes with a wealth of detailed appealing examples and carefully selected real-world
case studies.

We stress the existence of alternative methods for the solution of the most complicated
decision-making problems. Especially, diverse techniques for multicriteria analysis of alter-
natives on the basis of fuzzy preference modeling are presented. The choice of a specific
technique is a prerogative of a decision-maker or of a group of decision-makers; it is based on
the specificity of the problem and possible sources of available information and its uncertainty.

There have been a number of comprehensive publications in the area of fuzzy decision-
making, each of them adhering to some pedagogy and highlighting a certain perspective on
the decision-making process. The key features of this book, which determine its focus, can be
highlighted as follows:

� It describes a complete set of models and methods based on the direct application of fuzzy sets
or their combination with other approaches to uncertainty representation and handling for
multicriteria decision-making, including multiobjective, multiattribute, and group decision-
making. We aim at providing constructive answers to the fundamental decision questions
“what should we do?” and “how should we do it?” which emerge in the planning, design,
operation, and control of complex systems.

� Taking into account that different experts involved in a decision-making process as well as
different criteria taken into consideration can demand the use of different ways to represent
preferences, the book includes the description of several preference formats, which cover
a majority of real situations encountered when preparing information for decision-making.
The book presents transformation functions for converting different preference formats into
fuzzy preference relations. It bridges an acute gap between decision-making in a fuzzy
environment and classical, widely applied decision-making technologies, such as utility
theory and an analytic hierarchy process (AHP) approach.

� It describes different aggregation strategies and procedures for constructing collective opin-
ions in group decision-making. The main differences between these strategies are associated
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with: the points in the process of the multicriteria analysis in which aggregation of the
opinion of experts is carried out; the way the experts are considered (mutually dependent or
independent); and the character of estimates being aggregated (fuzzy or linguistic estimates,
fuzzy preference relations, or fuzzy nondominance degrees).

� It presents different consensus schemes which allow different ways of organizing the meet-
ings among the experts involved in a decision-making process. We show how a level of
consensus among the experts and a level of concordance among pairs of opinions can be
assessed and monitored.

� It describes ways of evaluating the consequences of decision-making, including the quantifi-
cation of particular risks or regrets (monocriteria estimates) and aggregated risks or regrets
(multicriteria estimates), which are based on a generalization of the classic approach to
dealing with uncertainty in decision-making problems.

Due to the coverage of the material, the book will appeal to those active in various areas in
which decision-making becomes of paramount relevance: operational research, systems anal-
ysis, engineering, management, and economics. Given the way in which the material is struc-
tured, the book can serve as a useful reference source for graduate and senior undergraduate
students in courses related to the areas indicated above, as well as for courses on decision-
making, risk management, numerical methods, and knowledge-based systems. The book will
be of interest to system analysts and researchers in areas where decision-making technologies
are paramount.

The book is organized into 10 chapters. In Chapter 1, which is of an introductory nature,
we offer the reader a broad perspective on the fundamentals of decision-making problems and
discuss generic notions of decision-making problems such as criteria, objectives, and attributes.
Diverse manifestations of the uncertainty factor, its relevance, and visibility in decision-
making problems are stressed. We also discuss fundamental differences between optimization
and decision-making problems. The main objectives, concepts, and characteristics of group
decision-making are presented. The role of fuzzy sets is stressed in the general framework
of decision-making processes along with their advantages in application to individual and
group decision-making problems. The chapter also presents all the required notation and
terminology used throughout the book.

The basic concepts of fuzzy sets are introduced in Chapter 2. The fundamental idea of
partial memberships, which are conveniently quantified through membership functions and
individual membership degrees, is discussed. We present the underlying rationale behind fuzzy
sets regarded as information granules and then move on to a detailed description of fuzzy sets
by considering the most commonly encountered classes of membership functions and directly
relating these classes to the semantics of fuzzy sets. The basic operations on fuzzy sets are
further elaborated. The fundamental concepts of fuzzy relations and their main properties,
which are of direct relevance to decision-making problems, are discussed. In Chapter 3, which
is an immediate continuation of Chapter 2, we present the development aspects of fuzzy set
ideas by focusing on the main issues related to the design of fuzzy sets, logic operations, and
aggregation of fuzzy sets, and their transformations (mappings).

In Chapter 4, the questions of the construction, analysis, and application of continuous
multicriteria decision-making models (multiobjective or 〈X, M〉 models) are considered. The
basic definitions related to multicriteria decision-making as well as the commonly utilized
approaches to multiobjective decision making are discussed. Particular attention is given
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Preface xix

to the classic and well-established Bellman–Zadeh approach to decision-making in a fuzzy
environment and its application to multicriteria problems. We show that this approach is a
convincing means to develop harmonious solutions to multiobjective problems. We illustrate its
direct use by solving problems on the multicriteria allocation of resources (or their shortages)
as well as some important power engineering problems.

Chapter 5 provides an introduction to preference modeling realized in terms of binary
fuzzy relations and addresses certain difficulties that arise in the extension of the classical
or Boolean preference structures of binary relations to the fuzzy environment. To alleviate
these difficulties, we recall some concepts related to binary fuzzy relations and specific t-
norms, t-conorms, and negation operators. We introduce fuzzy preference structures of binary
fuzzy relations as well as develop a method for constructing these fuzzy structures, without
losing important characteristics that are present in the classical preference structures of binary
relations.

Chapter 6 is dedicated to an important problem of forming fuzzy preference relations to
analyze multiattribute decision-making models (〈X, R〉 models). Techniques based on the
direct and indirect construction of preference relations are considered. Experts involved in an
individual or group decision-making process may present their preferences in heterogeneous
forms. Different criteria can also demand the use of different preference forms. Taking this
into account, the chapter considers five preference formats which cover a significant part of
real situations and which arise in preparing preference information. Considering this as well as
the rationality of utilizing fuzzy preference relations for a uniform preference representation,
the chapter studies diverse transformation functions required to convert different preference
formats into fuzzy preference relations. Some aspects of eliminating inconsistencies in the
judgments provided by experts are also tackled here.

In Chapter 7, the essence and key features of problems of multicriteria evaluation, compari-
son, choice, prioritization, and/or ordering of alternatives in a fuzzy environment, based on the
analysis of 〈X, R〉 models, are discussed. There exist two types of situations which generate
these models. The first type is associated with a direct statement of multiattribute decision-
making problems when the consequences of the problems’ solution cannot be estimated with a
single criterion. The second type, illustrated in the chapter by analyzing continuous as well as
discrete optimization models with fuzzy coefficients, is related to problems that may be solved
on the basis of a single criterion; however, if the uncertainty of information does not permit one
to obtain unique solutions, it is possible to reduce these problems to multiattribute decision-
making by applying additional criteria. Diverse techniques of the multicriteria analysis of
alternatives in a fuzzy environment developed on the basis of fuzzy preference modeling are
considered. These techniques are directly aimed at individual decision-making. However, they
can be and are applied to decision-making in a group environment. We stress that although the
presented techniques can lead to different solutions, this situation is quite natural and should
not be treated as an impediment of the underlying methods. On the contrary, given several
methods, the most adequate technique can be selected by taking into account the essence of
the problem, possible sources of information, and associated uncertainty.

In Chapter 8, the generalization of the classic approach to dealing with uncertainty of
information (based on constructing and analyzing payoff matrices) in monocriteria decision-
making for multicriteria problems is discussed. The ways of constructing aggregated payoff
matrices, modifying the choice criteria, and evaluating particular (monocriteria) and aggregated
(multicriteria) risks or regrets in decision-making are studied. We propose a general scheme
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of multicriteria decision-making, based on a unified application of the generalization of the
classic approach and the use of the analysis of 〈X, M〉 and 〈X, R〉 models. The special feature
of this scheme is the utilization of all available quantitative information to the highest extent
in order to reduce the decision uncertainty regions; if a resolving capacity of the processing of
formal information does not lead to unique solutions, the scheme resorts to the application of
qualitative information based on the knowledge, experience, and intuition of experts involved
in a decision-making process.

The last two chapters are dedicated to different approaches for solving decision-making
problems in a group environment. In particular, Chapter 9 is concerned with a certain approach
which consists of using aggregation procedures regarded as the exclusive arbitration scheme to
arrive at an evaluation, comparison, choice, prioritization, and/or ordering of alternatives for the
group. This type of dictatorial arbitration scheme does not require achieving a consensus within
a group of decision-makers. Three strategies, based on different aggregation mechanisms,
are considered. In each of them, the experts involved in the decision process are seen in a
different way: either as mutually dependent individuals who act synergistically in the process
of decision-making; or as independent individuals who are capable of solving the decision-
making problem independently of the other members. We include some examples to illustrate
how these strategies are utilized to solve group decision problems by means of different
techniques for multiattribute decision-making.

Finally, Chapter 10 presents a suite of procedures for achieving a consensus in the analysis
of discrete multicriteria decision-making problems, which involves the evaluation, compari-
son, choice, prioritization, and/or ordering of alternatives, in a group environment. The chapter
presents two different approaches for constructing collective opinions under a rubric of satis-
factory consensus: the consensus schemes and the procedures for constructing an optimized
consensus. Whereas the former approach requires the experts to review and update their re-
spective opinions in an iterative discussion process, the latter approach represents an attempt
to automate the process of constructing and improving the collective opinion, in such a way
that the level of consensus in the group is elevated. Each approach has its own advantages
and drawbacks. The selection of the most suitable method for a specific application depends
mostly on the available time and on the cost of facilitating meetings among the members of
the group.

As has been noted, the book can be used in a variety of senior undergraduate and graduate
courses. While, in general, one can adhere to the linear flow of coverage of the main topics
presented in the consecutive chapters, depending upon the prerequisites, some chapters can be
briefly reviewed. For instance, assuming familiarity with the concepts of fuzzy sets, Chapters 2
and 3 could be briefly reviewed with more focus on the design of fuzzy sets and their operational
framework.
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1
Decision-Making in System
Project, Planning, Operation, and
Control: Motivation, Objectives,
and Basic Concepts

The intent of this introductory chapter is to offer the reader a broad perspective on the fun-
damentals of decision-making problems, provide their general taxonomy in terms of criteria,
objectives, and attributes involved, stress the relevance and omnipresence of the uncertainty
factor, and highlight the aspects of rationality of decision-making processes. We also highlight
the fundamental differences between optimization and decision-making problems. The main
objectives, concepts, and characteristics of group decision-making are presented. The role
of fuzzy sets is stressed in the general framework of decision-making processes. The main
advantages of their application to individual and group decision-making processes are briefly
discussed. The chapter also clarifies necessary notations and terminology (such as 〈X, M〉
models and 〈X, R〉 models) used throughout the book.

1.1 Decision-Making and its Support

The life of each person is filled with alternatives. From the moment of conscious thought to a
venerable age, from morning awakening to nightly sleeping, a person meets the need to make
a decision of some sort. This necessity is associated with the fact that any situation may have
two or more mutually exclusive alternatives and it is necessary to choose one among them. The
process of decision-making, in the majority of cases, consists of the evaluation of alternatives
and the choice of the most preferable from them.

Making the “correct” decision means choosing such an alternative from a possible set of
alternatives, in which, by considering all the diversified factors and contradictory requirements,
an overall value will be optimized (Pospelov and Pushkin, 1972); that is, it will be favorable
to achieving the goal sought to the maximal degree possible.

Fuzzy Multicriteria Decision-Making: Models, Methods and Applications          Witold Pedrycz, Petr Ekel and Roberta Parreiras
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If the diverse alternatives, met by a person, are considered as some set, then this set usually
includes at least three intersecting subsets of alternatives related to personal life, social life,
and professional life. The examples include, for instance, deciding where to study, where to
work, how to spend time on a weekend, who to elect, and so on.

At the same time, if we speak about any organization, it encounters a number of goals and
achieves these goals through the use of diverse types of resources (material, energy, financial,
human, etc.) and the performance of managerial functions such as organizing, planning,
operating, controlling, and so on (Lu et al., 2007). To carry out these functions, managers
engage in a continuous decision-making process. Since each decision implies a reasonable
and justifiable choice made among diverse alternatives, the manager can be called a decision-
maker (DM). DMs can be managers at various levels, from a technological process manager
to a chief executive officer of a large company, and their decision problems can vary in nature.
Furthermore, decisions can be made by individuals or groups (individual decisions are usually
made at lower managerial levels and in small organizations, and group decisions are usually
made at high managerial levels and in large organizations). The examples include, for instance,
deciding what to buy, when to buy, when to visit a place, who to employ, and so on. These
problems can concern logistics management, customer relationship management, marketing,
and production planning.

A person makes simple, habitual decisions easily, frequently in an automatic and subcon-
scious way, not leaving much to intensive thinking. However, in many cases, alternatives are
related to complex situations which are characterized by a discrepancy of requirements and
multiple criteria, ambiguity in evaluating situations, errors in the choice of priorities, and
others. All these factors substantially complicate the process of taking decisions.

Furthermore, various facets of uncertainty are commonly encountered in a wide range of
decision-making problems, which are inherently present in the project, planning, operation,
and control of complex systems (engineering, economical, ecological, etc.). In particular,
diverse manifestations of the uncertainty factor are associated, for instance, with:

� the impossibility or inexpediency of obtaining sufficient amounts of reliable information;
� the lack of reliable predictions of the characteristics, properties, and behavior of complex

systems that reflect their response to external (the surroundings) and internal actions;
� poorly defined goals and constraints in the project, planning, operation, and control tasks;
� the impossibility of formalizing a number of factors and criteria.

This situation should be considered as being natural and unavoidable in the context of complex
systems. It is not difficult to understand that it is impossible, in principle, to reduce these
problems to exact and well-formulated mathematical problems; to do this, it is necessary, in
one way or another, “to take away” the uncertainty and position some hypothesis. However, the
construction of a hypothesis is a prerogative of the substantial analysis; this is the formalization
of informal situations. One of the ways to address the problem is the formation of subjective
estimates carried out by experts, managers, and DMs in general, and the definition of the
corresponding preferences.

Thus DMs are forced to rely on their own subjective ideas of the efficiency of possible
alternatives and importance of diverse criteria. Sometimes, this subjective estimation is the
only possible basis for combining the heterogeneous physical parameters of a problem to be
solved into a unique model, which permits decision alternatives to be evaluated (Larichev,
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1987). At the same time, there is nothing unusual and unacceptable in the subjectivity itself.
For instance, experienced managers perceive, in a broad and well-informed manner, how many
personal and subjective considerations they have to bring into the decision-making process.
On the other hand, successes and failures of the majority of decisions can be judged by people
on the basis of their subjective preferences.

However, the most complicated aspect is associated with the fact that a realm of problems
solved by humans in diverse areas has been changed (Trachtengerts, 1998). New, more com-
plicated, and unusual problems have emerged. For many centuries, people made decisions by
considering one or two main factors, while ignoring others that were perceived to be marginal
to the essence of the problem. They lived in a world where changes in the surroundings were
few and new phenomena arose “in turn” but not simultaneously.

At the present time, this situation has changed. A considerable number of problems, or
probably the majority of them, are multicriteria in nature, where it is necessary to take into
account many factors. In these problems, a DM has to evaluate a set of influences, interests,
and consequences which characterizes decision alternatives. For example, in decision-making
dealing with the formation of an enterprise, it becomes necessary to consider not only the ex-
pected profits and necessary investment, but also market dynamics, the actions of competitors,
and ecological, political, and social factors, etc.

Taking into account all the aspects listed above, it is necessary to stress that recognition
of the factor of subjectivity of a DM in the process of decision-making conflicts with the
fundamental methodological principle of operational research: the search for an objectively
optimal solution. Recognition of the ultimate right of a DM in the subjectivity of decisions is
a sign of the appearance of a new paradigm of multicriteria decision-making (Kuhn, 1962).
However, in decision-making with multiple criteria, an objective component always exists.
Usually, this component includes diverse types of constraints imposed by the environment on
possible decisions (availability of resources, temporal constraints, ecological requirements,
social situations, etc.).

A large number of psychological investigations demonstrate that DMs, not being provided
with additional analytical support, use simplified and, sometimes, contradictory decision rules
(Slovic, Fischhoff, and Lichtenstein, 1977).

Further, Lu et al. (2007) share the opinion given above (Trachtengerts, 1998) and indicate
that decision-making in the activities of organizations is more complicated and difficult be-
cause the number of available alternatives is much larger today than ever before. Due to the
availability of information technology and communication systems, especially the Internet
and its search engines, we can find more information quickly and therefore more alternatives
can be generated. Second, the cost of making errors can be great because of the complex-
ity of operations, automation, and the chain reaction that an error can cause in many parts,
in both the vertical and horizontal levels, of the organization. Third, there are continuous
changes in the fluctuating environment and more uncertainties in the impacting elements,
including information sources and information itself. More importantly, the rapid change of
the decision environment requires decisions to be made quickly. These reasons cause organi-
zational DMs to require increasing technical support to help make high-quality decisions. A
high-quality decision, such as in bank management, is expected to bring greater profitability,
lower costs, shorter distribution times, and increased shareholder value, attracting more new
customers, or resulting in a certain percentage of customers responding positively to a direct
mail campaign.
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Decision support consists of assisting a DM in the process of decision-making. For instance,
this support may include (Trachtengerts, 1998):

� assisting a DM in the analysis of an objective component, that is, in the understanding and
evaluation of the existing situation and constraints imposed by the surroundings;

� revealing DM preferences, that is, revealing and ranking priorities, considering the uncer-
tainty in DM estimates, and shaping the corresponding preferences;

� generating possible solutions, that is, shaping a list of available alternatives;
� evaluating possible alternatives, considering DM preferences and constraints imposed by

the environment;
� analyzing the consequences of decision-making;
� choosing the best alternative, from the DM’s point of view.

Computerized decision support, in any case, is based on the formalization of methods for
obtaining initial and intermediate estimates given by a DM and on the algorithm for a proper
decision process.

The formalization of methods for generating alternatives, their evaluation, comparison,
choice, prioritization, and/or ordering, and, if necessary, concordance is a very complicated
processes. One of the main complexities and challenges is associated with the fact that a
DM, as a rule, is not ready to provide quantitative estimates in the decision process, is not
accustomed to the evaluation of proper decisions on the basis of applying formal mathematical
methods, and analyzes the consequences of decisions with difficulty.

As a matter of fact, decision support systems have existed for a long time, for example,
councils of war, ministry boards, various meetings, analytical centers, and so on (Trachtengerts,
1998). Although they were never called decision support systems, they executed the functions
of such systems, at least partially.

The term “decision support system” appeared at the beginning of the 1970s (Eom, 1995).
There are several definitions of this concept, such as that given in Larichev and Moshkovich
(1996): “Decision support systems are man-machine objects, which permit a DM to use data,
knowledge, objective and subjective models for the analysis and solution of semi-structured
or unstructured problems”.

Taking into account this definition, it is necessary to indicate that one of the important
features of decision-making problems is associated with their structures. In particular, it is
possible to distinguish structured, semi-structured, and unstructured problems of decision-
making (Simon, 1977; Larichev and Moshkovich, 1996; Lu et al., 2007). The latter two types
of decision-making problems are also called ill-structured.

In structured problems (quantitatively formulated problems), essential relationships are
established so convincingly that they can be expressed in numbers or symbols which receive,
ultimately, numerical estimates. Such problems can be described by existing “traditional”
mathematical models. Their analysis becomes possible by applying standard methods leading
to the solution.

Unstructured problems (qualitatively expressed problems) include only a description of the
most important resources, indicators, and characteristics. Quantitative relationships between
them are not known. These problems cannot be described by existing traditional mathematical
models and cannot be analyzed by applying standard methods.
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Finally, semi-structured problems (or mixed problems) include quantitative as well as qual-
itative elements. As these are examined, qualitative, little-known, poorly explored, uncertain
parameters have a tendency to dominate. These problems fall between structured and unstruc-
tured problems, having both structured and unstructured elements. The solutions to these prob-
lems involves a combination of both standard solution procedures and active DM participation.

According to the classification given above, typical problems in operational research can be
called structured. This class of problems is widely used in the project planning, operation, and
control of engineering systems. For example, it is possible to talk about the design of forms
of an aircraft hull, planning of water supply systems, control of power systems, and so on.

The distinctive characteristics of unstructured problems are as follows (Larichev and
Moshkovich, 1996):

� uniqueness of choice in the sense that, at any time, the problem is a new one for a DM or it
has new properties in comparison to a similar problem solved in the past;

� uncertainty in the evaluation of alternative solutions;
� the qualitative character of the evaluations of problem solutions, most often formulated in

verbal form;
� the evaluation of alternatives obtained only on the basis of the subjective preferences of a DM;
� the estimates of criteria obtained only from experts.

Typical unstructured problems are associated, for example, with planning new services, hiring
executives, selecting a locale for a new branch, choosing a set of research and development
projects, and alike.

If we speak about semi-structured problems, their solutions are based on applying traditional
analytical models as well as models based on DM preferences. As an example, one can look at
the problem (Trachtengerts, 1998) related to liquidation of the consequences of extraordinary
situations associated with radioactive contamination. In the solution of this problem, analytical
models can be applied to define the degree and character of radioactive contamination for
given temporal intervals. At the same time, models based on DM preferences can be applied
in the choice of measures for liquidation of the consequences of radioactive contamination.
It is possible to qualify many problems associated with economical and political decisions,
medical diagnostics, and so on, as semi-structured problems.

Returning to the issue of computerized decision support, we should note that, due to the large
number of components (variables, functions, and parameters) involved in many decisions, this
has become a basic requirement to assist DMs in considering and examining the implications
of various courses of decision-making (Lu et al., 2007). Furthermore, the impact of computer
technologies, particularly the Internet, on organizational management is increasing rapidly.
Interaction and cooperation between users and computers are growing to cover more and more
aspects of organizational decision-making activities. Internet- or intranet-based computerized
information systems have now become vital to all kinds of organizations.

Thus, computer applications in organizations are moving from transaction processing and
monitoring activities to problem analysis and finding solutions (Lu et al., 2007). Internet-
or intranet-based online analytical processing and real-time decision support are becoming
the cornerstones of modern management, in particular within the elaboration of e-commerce,
e-business, and e-government. There is a trend toward providing managers with information
systems that can assist them directly with their most important task, that is, making decisions.
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A detailed description of the advantages generated by applying computerized decision sup-
port systems for individual as well group decision-making is given, for instance, in Lu et al.
(2007). At the same time, these authors indicate that the important issue is that, with comput-
erized decision support technologies, many complex decision-making problems can now be
handled effectively. However, these technologies can be better used in analyzing structured
problems rather than semi-structured and unstructured problems. In an unstructured problem,
only part of the problem can be supported by advanced tools such as intelligent decision sup-
port systems. For semi-structured problems, the computerized decision support technologies
can improve the quality of information on which the decision is based by providing not just
a single, unique solution, but a range of alternative solutions from the decision uncertainty
regions. Their occurrence and essence will be discussed in the next section.

1.2 Optimization and Decision-Making Problems

Is there any difference between the notions of “optimization” and “decision-making”? Are
these notions synonymous or not? Partial answers to these questions have been given in the
previous section. However, deeper and more detailed considerations are beneficial here.

A traditional optimization problem is associated with the search for an extremum (minimum
or maximum, according to the essence of the problem) of a certain objective function, which
reflects our interests, when observing diverse types of constraints (imposed on allowable
resources, physical laws, standards, industrial norms, etc.). Formally, it is possible to represent
an optimization problem as follows:

F(x) → extr
x∈L

(1.1)

where L is a set of feasible solutions in Rn defined by the constraints indicated above.
To solve the problem (1.1) we should find a vector x0 such that

x0 = arg extr
x∈L

F(x) (1.2)

If numerical details of the problem (1.1) have been provided and we can obtain a unique
solution without any guidance or assistance from a DM, then we are concerned with an
optimization problem.

Generally, an optimization problem may be complicated from the mathematical point of
view, and we need a large amount of computing time to generate a solution. Can human
participation in the search for a solution be useful? Definitely, such participation could be
useful, because, for instance, the introduction of heuristics or a change of initial points for a
search can reduce the time necessary to obtain an optimal solution. However, in principle, a
unique solution to the problem can be obtained without human participation.

At the same time, the presence of any type of uncertainty can call for human participation
in order to arrive at a unique solution to the problem.

For instance, the uncertainty of information gives rise to some decision uncertainty regions.
As shown in Figure 1.1, the uncertainty of information δF(x) in the estimation of an objective
function F(x) leads to a situation where formally the solutions coming from a region δx
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F(x)

δF(x)
δF(x ′)

δx ′
δx

x

Figure 1.1 Decision uncertainty region and its reduction through the reduction of the level of uncer-
tainty of information.

cannot be distinguished, thus giving rise to a decision uncertainty region. Taking this into
consideration, the formal formulation (1.1) can be transformed to the following:

F(x, θ ) → extr
x∈L(θ)

(1.3)

where θ is a vector of uncertain parameters, whose existence changes the essence of (1.1). In
particular, we can say that the solution (1.2) is an optimal solution for a concrete realization
of θ (a concrete hypothesis); however, for some other realization (another hypothesis), it is no
longer optimal.

What are the ways to reduce this uncertainty region? The first way is to “buy” information
(let us not forget that any information has some cost associated with it), for example, by
acquiring additional measurements or examining experts to reduce the level of uncertainty. As
shown in Figure 1.1, the reduction of the uncertainty δF(x) to δF(x ′) permits one to obtain a
reduced decision uncertainty region with δx ′ < δx .

However, if there is no possibility of reducing the uncertainty of information, we can resort
to some alternative approach. This way is associated with introducing additional criteria to try
to reduce the decision uncertainty regions. As demonstrated in Figure 1.2, introduction of the
objective function F ′(x) allows us to reduce the decision uncertainty region as well, arriving
at δx ′ < δx .

On the other hand, the existence of more than one objective function may be considered as
uncertainty as well. This comes in as the uncertainty of goals. Although the nature of this type
of uncertainty is not the same as the uncertainty of available information, it also leads to the
generation of decision uncertainty regions.

To focus our attention, let us consider the simple problem of minimizing two objective
functions F1(x) = F1(x1, x2) and F2(x) = F2(x1, x2), considering a set of feasible solutions
L. We can transform L from the decision space to some region LF of the space of objective
functions F1(x) and F2(x) (or, simply, the objective space). In Figure 1.3, we can see that point
a corresponds to the best solution (minx∈L F1(x)) from the point of view of the first objective
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F(x)
F(x) F ′(x)

δF(x)

δx ′
δx

x

Figure 1.2 Decision uncertainty region and its reduction through the introduction of additional criteria.

function. On the other hand, point b corresponds to the best solution (minx∈L F2(x)) when
considered from the viewpoint of the second objective function.

Is point c a solution to the problem? Yes, it is. Can we improve this solution? Yes, we can
do that by passing to point d. Can we improve this solution? Yes, this is possible by passing to
point e. Can we improve this solution? This is possible by passing to point f . Can we improve
this solution? We cannot advance here. It is possible to pass to point g, but this step does not
make the resulting solution any better: we can improve it from the point of view of F1(x) but
deteriorate its quality from the point of view of F2(x). In a similar way, by passing to point h,
we can improve the solution from the point of view of F2(x) but deteriorate it from the point
of view of F1(x).

Thus, formally, the solution to the problem presented in the objective space is a boundary
�P

F of LF located between points a and b. The set �P ⊆ L corresponding to �P
F is the

problem solution, which is called a Pareto-optimal solution set. This concept of optimality
was proposed by Edgeworth (1881) and was further generalized by Pareto (1886). Although
we say that �P is the problem solution, from a formal point of view this is not a solution that
can be implemented. In reality, it is the decision uncertainty region. The choice of a particular
Pareto-optimal solution is based on the DM’s involvement.

F2(x )

F1(x)

min F2(x)
x∈L

Ω

LF

F
P

min F1(x)
x∈L

b

f h

e

d
c

a

g

Figure 1.3 The concept of Pareto-optimal solutions.
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The more difficult situations are associated with problems where there exists an uncertainty
of information as well as an uncertainty of goals.

The problems of an optimization character, which include the uncertainty of information
and/or the uncertainty of goals and demand human participation in their solution, are inherent
problems in decision-making. Taking this into consideration, it is necessary to make some
additional observations.

One of the most important criteria (Larichev, 1984) for classifying decision-making prob-
lems is the existence or lack of an objective model for the corresponding problem. Note
here that it is not uncommon to encounter situations where it is impossible to talk about
the existence of objective functions in decision-making problems. The models which can be
used for analyzing these problems reflect “a point of view” and, in a more general sense,
the “world outlook” of a DM. In these cases, an obvious question is how to choose actions
which correspond, in the best way, to the preferences of a DM (Keeney and Raifa, 1976)
and are based on his/her knowledge, experience, and intuition. Taking this into account,
semi-structured and unstructured problems, classified in the previous section, are subjects of
decision-making.

In conclusion, the following general tendency is visible. If we solve an optimization
problem, we generally look for the best solution. If we talk about a decision-making
problem, the methodology used to solve it is quite distinct: we do not look for the best
solution, but apply information arriving from different sources and try to eliminate some
alternatives, which are dominated by other alternatives, in order to reduce the decision
uncertainty regions.

1.3 Multicriteria Decision-Making

The uncertainty of goals in decision-making is an important manifestation of uncertainty that
relates to the multicriteria character of many problems encountered in the project, planning,
operation, and control of complex systems of different nature. Some professionals in the field
of decision-making and systems analysis (for example, Lyapunov, 1972) agree that, from the
general point of view, this type of uncertainty is the most difficult to treat and overcome
because “we simply do not know what we want”. In reality, this type of uncertainty cannot be
effectively captured on the basis of applying formal models and methods, because sometimes
the unique information sources are the individuals who make decisions.

Multicriteria decision-making is related to making decisions in the presence of multiple
and conflicting criteria. Multicriteria decision-making problems may range from everyday
decision problems, such as the purchase of a car, to those affecting entire nations, as in the
judicious use of money to preserve national security (Lu et al., 2007).

However, even with this existing diversity, all multicriteria decision-making problems share
the following common characteristics (Hwang and Yoon, 1981):

� multiple criteria: each problem has multiple criteria, which can be objectives or attributes;
� conflicting criteria: multiple criteria conflict with each other;
� incommensurable units: criteria may have different units of measurement;
� design/selection: solutions to multicriteria decision-making problems are either to design

the best alternative(s) or to select the best one among previously specified finite alternatives.
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Taking the above into account, we distinguish two types of criteria: objectives and
attributes. In such a manner, multicriteria decision-making problems can be classified into two
wide classes:

� multiobjective decision-making;
� multiattribute decision-making.

The main difference between these two classes is that the first concentrates on continuous
decision spaces and the second focuses on problems with discrete decision spaces.

To elaborate further, some basic concepts and terminology are given below. They are in
line with the notation presented in the literature (Hwang and Masud, 1979; Hwang and Yoon,
1981; Lu et al., 2007).

Criteria form the standard of judgment or rules to test acceptability. In the multicriteria
decision-making literature, they indicate objectives and/or attributes.

Objectives are the reflection of the desire of DMs and indicate the direction on which DMs
want to concentrate. Multiobjective decision-making problems, as a result, involve the design
of alternatives that optimize or at least satisfy the objectives of DMs.

Goals are entities desired by DMs and expressed in terms of a specific state in space and
time. Thus, while objectives give the desired direction, goals give a desired (or target) level
to achieve.

Attributes are the characteristics, qualities, or performance parameters of alternatives.
Multiattribute decision-making problems involve the selection of the “best” alternative from
a pool of preselected alternatives described in terms of their attributes.

Multiobjective decision-making is known as the continuous type of multicriteria decision-
making and its main characteristics are that DMs need to achieve multiple objectives
while these objectives are noncommensurable and conflict with each other. A multiob-
jective decision-making model includes a vector of decision variables, objective functions
that describe the objectives, and constraints. DMs attempt to maximize or minimize the
objective functions.

Multiattribute decision-making is related to making a preference decision (that is, compari-
son, choice, prioritization, and/or ordering) over the available alternatives that are characterized
by multiple, usually conflicting, attributes. The main peculiarity of multiattribute decision-
making problems is that there are usually a limited number of predetermined alternatives,
which are associated with a level of achieving the attributes. Based on the attributes, the final
decision is made.

Finally, we should discuss in detail the concept of alternatives. How to generate alternatives
is a significant part of the process of multiobjective and multiattribute decision-making model
building (Lu et al., 2007). In almost all multiobjective decision-making models, the alternatives
can be generated automatically by the models. In the case of multiattribute decision-making
models, however, it is necessary to generate alternatives manually. Sometime, the essence of
the problem defines the number of alternatives. However, in general, how and when to stop
generating alternatives becomes a very important issue. Generating alternatives significantly
depends on the availability and cost of information, and also requires reliance on expertise in
the problem area. Alternatives can be generated with the use of heuristics as well, and they
could come from either individuals or groups.
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The issues related to the necessity of setting up and solving multicriteria problems as well as
the classification of decision-making situations, which need the application of the multicriteria
approach, have been discussed in many works (for instance, Larichev, 1984; Gomes, Gomes,
and Almeida, 2002). It is possible to identify two major types of situations, which call for the
application of a multicriteria approach:

� Problems whose solution consequences cannot be estimated with a single criterion: these
problems are associated with the analysis of models including economic as well as physical
indices (when alternatives cannot be reduced to comparable form) and also by the need to
consider indices whose cost estimation is hampered (for example, many power engineering
problems are considered on the basis of technological, economical, ecological, and social
nature criteria).

� Problems that may be solved on the basis of a single criterion (or several criteria). However,
if the uncertainty of information does not permit the derivation of unique solutions, it is
possible to reduce these problems to multicriteria decision-making by applying additional
criteria, including those of a qualitative character (for example, “flexibility of development”,
“complexity of maintenance”, “attractiveness of investments”, and so on, whose utilization
is based on the knowledge, experience, and intuition of involved experts). This can serve as
a convincing means to contract the corresponding decision uncertainty region. It could be
regarded as an intuitively appealing approach exercised in the practice of decision-making.

According to the major types of situations outlined above, two classes of models, so-called
〈X, M〉 models and 〈X, R〉 models (Ekel, 2001; Ekel, 2002) can be constructed. Both of
these classes of models are comprehensively discussed in the book. The 〈X, M〉 models corre-
spond to multiobjective decision-making problems. In the book, their analysis is illustrated by
considering the problems of multicriteria allocation of resources or their shortages (with the
presentation of an adaptive interactive decision-making system (AIDMS1), which is dedicated
to their solution) as well as important classes of power engineering problems (multiobjective
power and energy shortage allocation as applied to load management, multiobjective power
system operation, multiobjective optimization of network configurations in distribution sys-
tems, and energetically effective (bicriteria) voltage control in distribution systems). At the
same time, the 〈X, R〉 models correspond to the multiattribute decision-making problems
and include a vector of fuzzy preference relations (Orlovsky, 1981; Fodor and Roubens,
1994), which play the role of attributes. We will present an interactive system for multicriteria
decision-making (MDMS) dedicated to the analysis of the 〈X, R〉 models. In the book, the
construction and application of the 〈X, R〉 models is illustrated by considering the problems
of substation planning in power systems, reactive power source choice at a power system bus,
energy planning (selection of the most appropriate technology in a renewable energy diffusion
plan) as well as managerial activities.

Finally, the 〈X, R〉 models are also used in the present book in problems of group decision-
making, which are briefly discussed in the next section.

1.4 Group Decision-Making

Group decision-making is defined as a decision situation in which there is more than one
individual involved. The group members have their own attitudes and motivations, recognize
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the existence of a common problem, and attempt to reach a collective decision (Lu et al.,
2007). The necessity of applying procedures of group decision-making is associated with the
following considerations.

There are many situations, for instance at the high managerial levels of organizations,
when the decision problems involve wide domains of knowledge which are beyond a single
individual (this is particularly true when the decision environment becomes more complex and
multifaceted). As a consequence, it is usually necessary to allocate more than one professional
to the decision process. This is particularly valid in environments with a diverse workforce,
where decisions require multiple perspectives and different areas of expertise of the individuals
represented in the group. The following are among the advantages of group over individual
decision-making (Tan, Teo, and Wei, 1995):

� Group decision-making allows more intellectual resources to be gathered to support the
decision. The resources available to the group include the individual competencies, intuition,
and knowledge.

� With the participation of multiple experts, it becomes possible to distribute among them the
labor related to acquiring and processing the vast amount of information pertaining to the
decision.

� If the group members exhibit divergent interests, the final decision tends to be more repre-
sentative of the needs of the organization.

It is possible to indicate some important characteristics of group decision-making as follows
(Lu et al., 2007):

� the group performs a decision-making task;
� group decision-making may cover the whole process of transfer from generating ideas for

solving a problem to implementing solutions;
� group members may be located at the same place or at different places;
� group members may work at the same or different times;
� group members may work for the same or different departments or organizations;
� the group can be at any managerial level;
� there may be conflicting opinions in the group decision process among group members;
� the decision might have to be accomplished in a short time;
� group members might not have complete information for the decision;
� some required data, information, or knowledge for a decision may be located in many

sources and some may be external to the organization.

Quite often, the group members may be at different locations and may be working at different
times. Thus, they need to communicate, collaborate on, and access a diverse set of information
sources, which can be met by the development of the Internet and its derivates (intranets
and extranets). The questions of constructing and utilizing Web-based group decision support
systems are discussed, for instance, in Lu et al. (2007).

With regard to the common goals and interests of the experts in group decision-making, it is
worthy distinguishing two different environments, namely cooperative and noncooperative
work. In cooperative decision-making, all the experts are supposed to work together, in
order to achieve a decision for which they will share the responsibility. In noncooperative
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decision-making, the experts play the role of antagonists or disputants over some common
interest for which they must negotiate (Lu et al., 2007). It should be made clear that this book
addresses problems of group decision-making in the cooperative environment.

As in cooperative work the experts share responsibility for the decision (and, as indicated
above, they also may participate in the implementation of the selected solution), it is important
to guarantee that each member is satisfied with the selected solution. Clearly the commitment
of the group to the implementation of the outcomes depends upon the level of consensus
achieved by the group. Under this perspective, a group decision constructed by means of
domination and enforced concessions should be considered inferior to an individual decision,
because it will probably face more difficulties in its implementation. Therefore, achieving a
genuine consensus on the solution is an important task for the group. However, it should be
indicated that achieving perfect concordance among the experts is extremely rare. Although,
ideally, the condition for terminating the decision-making process under group settings should
be the achievement of a unanimous solution, in reality, because that unanimous solution hardly
ever exists, it is sufficient to meet the alternative that is the most satisfactory for the group as
a whole. Otherwise, the decision will probably take longer than is admissible or affordable.

Among the reasons for the occurrence of discordance among the group, we can identify
the following:

� Although group members are supposed to share the primary goal, which obviously is to
meet the solution which most benefits the organization, their secondary goals may be just
partially shared. For instance, when each expert is representative of a different department,
it is natural that they would have specific interests associated with the priorities and needs
of their respective departments.

� Each expert usually has a distinct perception of the problem and intuition which may be
difficult to formalize and communicate to the other members.

� In general, no single expert knows the entire domain of the decision problem. Each expert
usually has access to different profiles of information. In particular, certain members of the
group may have privileged access to secure information.

In general, these factors can be diminished by promoting discussions among the experts, in
an attempt to pool all relevant information pertaining to the decision. Indeed, by pooling the
undistributed information, it is possible to increase the chances of achieving better decisions
than each member could obtain without help. However, the existence of abundant intellectual
resources is not sufficient to guarantee high-quality decisions, as the group may fail to wisely
consider, evaluate, and integrate the profiles of information and perspectives held by the other
members of the group (Bonner, Baumannb, and Dalal, 2002; van Ginkel and van Knippenberg,
2009). The current literature identifies some factors that can adversely affect the decision
process, leading to low-quality decisions. We can distinguish the following:

� The pressure for early consensus that is due to the need to obtain a solution rapidly.
� The pressure of concordant majorities on the other experts, which is reflected by the group’s

tendency to prematurely converge on a single solution, once a majority supports a position
(even if such solution is not good).

� The problem of critical pooling of nondistributed (centralized) information, which can be
described as follows: the information supporting the best alternative is not shared among
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all experts, whereas all experts have information supporting the inferior alternatives. Under
these circumstances, the group may prematurely achieve a consensus on a bad solution that
is apparently good, as the information shared among most experts has more chance of being
recalled than the information that is available to just a few experts. One way of reducing
this specific problem is to stimulate each member to focus on information related to their
respective areas of expertise during the discussion (Stasser and Vaughan, 2000).

In this context, it is important to stress the importance of the moderator (or facilitator) in the
discussion among the experts. As indicated in Wong and Aiken (2003), the participation of
a moderator, which may be human or automated, in the decision process, always results in
better outcomes. The moderator is supposed to act as an arbiter responsible for controlling the
information flow across the group. In this way, the moderator does not participate directly in
the decision, but is supposed to enhance the ability of the group to make decisions (Griffith,
Fuller, and Northcraft, 1998).

Among the tasks of a moderator we can identify the following: (1) define the rules for the
group decision process and the tasks of each member, select the appropriate group technology,
support the group in formulating the problems, and define the outcomes to be achieved; (2)
develop the schedule to be accomplished, identify controversial opinions across the group,
identify conflicting topics that should be focused on in the discussion, and verify if the current
level of concordance among experts is acceptable (Ngwenyama, Bryson, and Mobolurin,
1996).

It is important to indicate that, in real-world applications, sometimes it is impossible to
promote the consensus and thereby the exchange of information among the experts, due to
logistic, timing, or monetary constraints. In this case, the invited professionals may give their
opinions individually and then the group decision is dictatorially constructed with the use of
an aggregation rule, despite the existence of substantial discordances among the experts. We
can distinguish the following most common approaches for dealing with this situation:

� the use of a majority rule, according to which the group decision is constructed in concor-
dance with the opinion of the majority in the group (Lu et al., 2007);

� the use of a rule determined by a member of the group with authority to make the ultimate
decision for the group (Lu et al., 2007);

� the search for a collective opinion that minimizes the major discordance in the group, in
such a way that no expert is extremely dissatisfied with the group outcomes (Parreiras et al.,
2010).

1.5 Fuzzy Sets and their Role in Decision-Making Processes

As elaborated in Section 1.1, various types of uncertainty are commonly met in a wide range
of decision-making problems, which are inherently encountered in the project, planning,
operation, and control of complex systems. Taking these types of uncertainty into account
when constructing mathematical models serves as a vehicle for increasing the adequacy of the
models and, as a result, the credibility and factual efficiency of decisions based on their analysis.
Considering this, it is necessary to note that the starting point in the formation of mathematical
models is the requirement of a strict correspondence of these models to the level of uncertainty
of information used for their construction. Observing just this correspondence, we can talk
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about the adequacy of the presentation of the object, system, or process and the possibility of
obtaining a real effect as a result of solving the corresponding problems of an optimization
character. Any simplification of reality or its idealization, undertaken with the purpose of
using rigorous mathematical models, distorts the nature of many problems and diminishes
the practical value of results obtained on the basis of analyzing these models. Following this
line of thought, researchers (for instance, Belyaev and Krumm, 1983; Rommelfanger, 2004),
for a number of reasons, have doubts about the validity or, at least, the expediency of taking
into account the uncertainty factor within the framework of traditional approaches (first of
all, approaches based on probability theory, for instance, Dantzig, 1955; Grassman, 1981;
Wagner, 1982). In particular, Belyaev and Krumm (1983) indicate that, similar to the solution
of problems on the basis of deterministic methods, when we assume exact knowledge of the
information, which usually does not correspond to reality, the application of probabilistic
methods also supposes exact knowledge of the distribution laws and their parameters, which
does not always correspond to the real possibilities of obtaining the entire spectrum of the
probabilistic description.

In general, the approaches highlighted above do not ensure an adequate or suffi-
ciently rational consideration of the uncertainty factor along with an entire spectrum of
its manifestations.

Giving up the traditional approaches to the construction of mathematical models and, the
application of the fuzzy set theory (Dubois and Prade, 1980; Zimmermann, 1996; Pedrycz and
Gomide, 1998), established by Zadeh (1965), may play and plays a significant positive role in
overcoming the difficulties that are present. The utilization of this theory opens an interesting
avenue of giving up “excessive” precision, which is inherent in the traditional modeling
approaches, while preserving reasonable rigor. The principle of incompatibility coined by
Zadeh (1973) offers an interesting view of the tradeoffs between precision and relevance of
the models: “As the complexity of a system increases, our ability to make precise and yet
significant statements about its behavior diminishes until a threshold is reached beyond which
precision and significance (or relevance) become almost mutually exclusive characteristics”.
Furthermore, operating in a fuzzy parameter space allows one not only to be oriented toward
the contextual or intuitive aspect of the qualitative analysis as a fully substantial aspect,
but, by means of fuzzy set theory, to use this aspect as a sufficiently reliable source for
obtaining quantitative information. Finally, fuzzy sets allow one to reflect in an adequate way
on the essence of the decision-making process. In particular, since the “human factor” has a
noticeable effect and occupies a very visible position in making decisions in many real-world
problems, we can capitalize on the way in which fuzzy sets help quantify the linguistic facet
of available data and preferences (Dubois and Prade, 1980; Zimmermann, 1996; Pedrycz and
Gomide, 1998).

We also have to bear in mind that the quest for attaining the maximum effectiveness in
decision-making in the presence of uncertainty requires, first of all, that a significant effort be
directed toward finding ways to remove or, at least, partially overcome the uncertainty factor
(Popov and Ekel, 1987). In particular, this can be attained by aggregating information that
arrives from different sources, being both formal and informal in nature. This aggregation
allows one (Ekel and Popov, 1985) to supplement the characteristics of the uncertain initial
information by justified assumptions about the differentiated confidence (reliability) of its var-
ious values which could be reflected by choosing appropriate membership functions (Dubois
and Prade, 1980; Zimmermann, 1996; Pedrycz and Gomide, 1998).
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However, taking the above into account, it is necessary to indicate that the issues related to
the relationships between probability theory and fuzzy set theory, as well as an interpretation
of membership functions, have been the subject of intensive discussions of methodological
and philosophical character over the years. Thus, it should be emphasized that the decision-
making approaches based on fuzzy set theory do not compete with probabilistic methods,
but these two approaches are orthogonal in nature. Furthermore, we can witness some hybrid
approaches in which fuzzy sets and probability are used in a synergistic way. Likewise, recent
years have seen intensive investigations which have applied fuzzy set theory in combination
with other approaches to deal with diverse facets of uncertainty in problems of an optimization
character. These developments offer the advantages of both a fundamental nature (as we
exercise the possibility of obtaining more effective, less “cautious” solutions as well as the
ability to consider simultaneously different manifestations of the uncertainty factor) and a
computational character.

Finally, it is possible to distinguish two principal ways of solving problems under conditions
of uncertainty. In applying the first way, one obtains (at least, theoretically) an exact solution
for fixed values of the uncertain parameters, and then estimates its stability for variations of
such parameters (for example, by performing multivariant computations). The second way
presupposes the tracking of the effect of the uncertainty at all stages along the path toward the
final decision. This approach can be implemented on the basis of fuzzy set theory. It is much
more complicated than the first one, but is also much more fruitful and highly promising.

As mentioned above, in many real-world problems we have to take into account the criteria,
constraints, indices, and so on, of a qualitative character. Thus, it should be emphasized that this
type of information was taken into account in the past. However, it was used only after obtaining
solutions on the basis of the use of formal models, with the disruption of these solutions (to
consider information of a qualitative character) and without any sufficient justification. As
such approaches reduce the essential value of the obtained solutions, it remains necessary
to develop ways of introducing this type of information directly into the decision-making
processes. Fuzzy sets can be considered here as a sound way of proceeding along this path.

Returning to the considerations of Section 1.1, it is necessary to highlight that one of the most
important criteria for classifying decision-making problems (Larichev, 1987) is the existence
or lack of an objective model for the problem. Taking this into consideration, it should be
noted that it is not uncommon to encounter situations, as mentioned in Section 1.1, where it
is next to impossible to speak about the existence of objective functions in decision-making
problems. The corresponding models reflect the “world outlook” of a DM. In these cases, an
obvious question is how to choose actions which correspond, in the best way, to the preferences
of the individual (Keeney and Raifa, 1976). Considering that the manner of human thinking,
including the perception of preferences, is vague and subjective, fuzzy set theory can play an
important role in individual and group preference modeling (Fedrizzi and Kacprzyk, 1990;
Fodor and Roubens, 1994).

The application of fuzzy sets to preference modeling and analysis of the corresponding
decision-making problems provides a flexible environment which permits us to deal with the
inherent fuzziness of perception and, in this manner, to incorporate more human consistency
into preference models. Besides, a stimulus for utilizing fuzzy set theory stems, as indicated
above, from one of its most important facets that concerns the linguistic aspect commonly
applied to different decision-making problems and different preference structures (Herrera and
Viedma, 2000; Xu, 2005). In particular, it is possible to distinguish among several directions
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in decision-making by applying the linguistic aspect of fuzzy set theory, such as multicriteria
decision-making (Buckley, 1995; Rasmy et al., 2002), group decision-making (Yager, 1993;
Herrera, Herrera-Viedma, and Verdegay, 1995), diverse consensus schemes (Herrera, Herrera-
Viedma, and Verdegay, 1995; Bordogna, Fedrizzi, and Passi, 1997), decision-making on the
basis of information granularity (Borisov et al., 1989; Herrera, Herrera-Viedma, and Martı́nez,
2000), and so on. In principle, all these directions are associated with analyzing the 〈X, R〉
models mentioned above. Taking into account the rationality of analyzing 〈X, M〉 models on
the basis of fuzzy sets as well, it is possible to assert that their utilization in the statement and
solution of decision-making problems provides answers to the fundamental questions “What
should we do?” (〈X, R〉 models) and “How should we do?” (〈X, M〉 models) arising in the
project, planning, operation, and control of complex systems of diverse nature.

Finally, we should be aware that the development and application of diverse types of
uncertainty expressed in the language of fuzzy sets not only serves as a vehicle for improving
the adequacy of the constructed models and, consequently, enhancing the credibility and
factual efficiency of decisions based on their analysis, but also becomes highly beneficial to
the formation of convincing and effective human-oriented (in contrast to machine-oriented)
interfaces between a DM and a computer. This aspect becomes crucial given the important
and general trend of computerized “intellectualization” of decision-making pursuits.

Although the themes related to fuzzy decision-making have been widely and deeply studied,
this area brings about a number of open questions associated not only with methods of
decision-making in a fuzzy environment, but also with their combination with other branches
of the mathematics of uncertainty (Wang, 2007). From the practical point of view, only some
theoretical results have been translated to concrete algorithms and their implementation. In this
context, one of the essential objectives of this book is to fill certain theoretical and practical
gaps when considering the uncertainty and multicriteria factors in system projects, planning,
operation, and control.

1.6 Conclusions

We have discussed the fundamental questions of the appearance and essence of decision-
making problems arising in the project, planning, operation, and control of complex systems
of diverse nature. The relevance and omnipresence of the uncertainty factor and its influence on
the character of the analyzed decision-making models have been considered. The structured,
unstructured, and semi-structured problems of decision-making have been classified with a
distinct focus on unstructured problems. The main functions of decision support frameworks
have been briefly discussed. The fundamental differences between optimization and decision-
making problems have also been considered. The models of multicriteria decision-making have
been characterized and classified with the split into two main categories of so-called 〈X, M〉
and 〈X, R〉 models, which are the subject of comprehensive considerations in this book. The
essence, main concepts, and characteristics of group decision-making have been discussed.
Finally, the role of fuzzy set theory in decision-making processes has been discussed, including
consideration of its advantages. First of all we stressed the fundamental benefit stemming from
the use of fuzzy sets that is the possibility of obtaining more effective, less “cautious” solutions
to the decision-making problems, as well as the abilities of incorporating different facets and
manifestations of the uncertainty factor.
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2
Notions and Concepts of Fuzzy
Sets: An Introduction

In this chapter, we introduce the essential concepts of fuzzy sets. We focus on the fundamental
idea of partial membership, which is conveniently quantified through membership functions
and membership degrees. We present the underlying rationale and then move on to a detailed
description of fuzzy sets by discussing the most commonly encountered classes of membership
functions and relating these classes to the semantics of fuzzy sets. We elaborate on the basic
operations on fuzzy sets (intersection, union, complement, negation) and discuss the concepts
of fuzzy relations and their main properties, which are of direct relevance in the context of
decision-making.

2.1 Sets and Fuzzy Sets: A Fundamental Departure from the
Principle of Dichotomy

Conceptually and algorithmically, fuzzy sets constitute one of the most fundamental and
influential notions in science and engineering. The notion of a fuzzy set is highly intuitive
and transparent since it captures what really becomes the essence of a way in which the
real world is being perceived and described in our everyday activities. We are faced with
categories of objects whose “belongingness” to a given category (concept) is always a matter
of degree. There are numerous examples in which we encounter elements whose allocation
to the concept we want to define can be satisfied to some extent. One may eventually claim
that continuity of transition from full belongingness to full exclusion is the major and ultimate
feature of the physical world and natural systems. For instance, we may qualify an indoor
environment as comfortable when its temperature is kept around 20 ◦C. If we observe a value
of 19.5 ◦C it is very likely we still feel quite comfortable. The same holds if we encounter
20.5 ◦C – humans usually do not discriminate between changes in temperature within the
range of one degree Celsius. A value of 20 ◦C would be fully compatible with the concept
of comfortable temperature, yet 0 ◦C or 30 ◦C would not. In these two cases, as well for
temperatures close to these two values, we would describe them as being cold and warm,
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respectively. We could question whether the temperature of 25 ◦C is viewed as warm or
comfortable or, similarly, if 15 ◦C is comfortable or cold. Intuitively, we know that 25 ◦C
is somehow between comfortable and warm while 15 ◦C is between comfortable and cold.
The value 25 ◦C is partially compatible with the term comfortable and warm, and somewhat
compatible or, depending on the observer’s perception, incompatible with the term of cold
temperature. Similarly, we may say that 15 ◦C is partially compatible with the comfortable and
cold temperature, and slightly compatible or incompatible with the warm temperature. In spite
of this highly intuitive and apparent categorization of environment temperatures into the three
classes, namely cold, comfortable, and warm, we note that the transition between the classes
is not instantaneous and sharp. Simply, when moving across the range of temperatures, these
values become gradually perceived as cold, comfortable, or warm. A similar phenomenon
happens when we are dealing with the concept of the height of people. An individual of height
1 meter is short, whereas a person of 1.90 m is perceived to be tall. Again the question is, what
is the range of height values that could qualify a person to be tall? Does a height of 1.85 m
discriminate between tall and short individuals? Or maybe 1.86 m would be the right choice?
In asking these questions, we know that they do not make too much sense. We realize that the
nature of these concepts is such that we cannot use a single number – a transition between
the notion of tall and short is not abrupt in any way. Hence we cannot assign a single number
that does a good job. This sends a clear message: the concept of dichotomy does not apply
when defining even simple concepts. An illustration of the concept of dichotomy is included
in Figure 2.1(a). In contrast, defining a concept where we do not confine ourselves to the
dichotomy is illustrated in Figure 2.1(b).

Fuzzy sets and the corresponding membership functions form a viable and mathematically
sound framework to formalize these concepts. When talking about heights of Europeans we
may refer to real numbers within the interval [0,3] to represent a universe of heights that range
between 0 and 3 m. This universe of discourse (space) is suitable for describing the concept
of tall people.

Let us denote by X a universe of discourse (space) of all elements. The universe can be
either continuous or discrete. For instance, the closed interval [0,3] constitutes a continuous
and bounded universe whereas the set N = {0, 1, 2, . . .} of natural numbers is discrete and
countable but there are no bounds.

Consider the universe of discourse X = [0,3] and the collection S of values in X that are
less than a threshold value τ in X, for example, τ = 1.8. Consider the sets S = {x ∈ X | 0 <

x < 1.8} and T = {x ∈ X | 1.8 ≤ x ≤ 3.0}, Figure 2.2. Each set is a class whose members

(a) (b) 

short tall short tall 

threshold 

X X 

Figure 2.1 Contrasting the concept of a set and the principle of dichotomy itself versus a relaxation of
the concept of complete inclusion and exclusion.
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0.30 1.8

τ TS
X

x1 x2

Figure 2.2 A set as a collection of numerical values located in the corresponding intervals.

are elements of the universe that satisfy the same property. This set is equivalent to a list of
elements of the universe that are members of the set.

Given a certain value in X, the process of dichotomization (binarization) imposes a binary,
all or none, classification decision: either accept or reject the value as belonging to a given
collection. For instance, consider the set S shown in Figure 2.2. Clearly, the point x1 belongs
to S whereas x2 does not, that is, x1 ∈ S and x2 �∈ S. Similarly for the set T we have x1 �∈ T
and x2 ∈ T . If we denote the accept decision by 1 and the reject decision by 0, for short, we
may express the classification (assignment) decision of x ∈ X through a characteristic function
as follows:

S(x) =
{

1 if x ∈ S
0 if x /∈ S

T (x) =
{

1 if x ∈ T
0 if x /∈ T

(2.1)

In general, a characteristic function of set A defined in X assumes the following form:

A(x) =
{

1 if x ∈ A
0 if x /∈ A

(2.2)

The empty set � has a characteristic function that is identically equal to zero, �(x) = 0 for
all x in X. The universe X itself comes with the characteristic function that is identically equal
to one, that is, X(x) = 1 for all x in X. Also, a singleton A = {a}, a set with only a single
element, has a characteristic function such that A(x) = 1 if x = a and A(x) = 0 otherwise.

Characteristic functions A : X → {0, 1} induce a constraint with well-defined boundaries
on the elements of the universe X that can be assigned to a set A. The fundamental idea of a
fuzzy set is to relax this requirement by admitting intermediate values of class membership.
Therefore we may assign intermediate values between 0 and 1 to quantify our perception on
how compatible these values are with the class, with 0 meaning incompatibility (complete
exclusion) and 1 compatibility (complete membership). Membership values thus express the
degrees to which each element of the universe is compatible with the properties distinctive to
the class. Intermediate membership values mean that no “natural” threshold exists and that
elements of a universe can be members of a class and at the same time belong to other classes
with different degrees. Allowing for gradual, hence less strict, membership degrees is the crux
of fuzzy sets.

Formally, a fuzzy set A is described by a membership function mapping the elements of a
universe X to the unit interval [0,1] (Zadeh, 1965; Zadeh, 1975):

A:X → [0, 1] (2.3)

The membership functions are therefore synonymous of fuzzy sets. In a nutshell, membership
functions generalize characteristic functions in the same way as fuzzy sets generalize sets.
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X1

1.0 

A

6 5 4 3 2 10980 7

Figure 2.3 Fuzzy set A defined in a discrete universe X.

Fuzzy set can also be viewed as a set of ordered pairs of the form {x, A(x)} where x
is an element of X and A(x) denotes its corresponding degree of membership. For a fi-
nite universe of discourse X = {x1, x2, . . . , xn}, A can be represented by an n-dimensional
vector A = [a1, a2, . . . , an] with the elements ai = A(xi). Figure 2.3 illustrates a fuzzy set
whose membership function captures the concept of an integer around 5. Here n = 10.
The fuzzy set linguistically expressing the quantity around 5 in a finite universe of 10 inte-
gers A = [0, 0, 0, 0.2, 0.5, 1.0, 0.5, 0.2, 0, 0, 0]. An equivalent notation of A can be read as
A = {0/1, 0/2, 0/3, 0.2/4, 0.5/4, . . . , 0/10}.

The choice of the unit interval for the values of membership degrees is usually a matter of
convenience. The choice of the very detailed membership values (up to several decimal digits),
say A(4) = 0.9865, is not crucial or even counter-productive. We should stress here that in
describing membership grades, the ultimate objective is to reflect an order of the elements in
A in terms of their belongingness to the fuzzy set (Dubois and Prade, 1979).

Being more descriptive, we may view fuzzy sets as elastic constraints imposed on the
elements of a universe. As emphasized previously, fuzzy sets deal primarily with the concept
of elasticity, graduality, or absence of sharply defined boundaries. In contrast, when dealing
with sets we are concerned with rigid boundaries, lack of graded belongingness, and sharp,
binary boundaries. Gradual membership means that no natural boundary exists and that some
elements of the universe of discourse can, contrary to sets, coexist (belong) to different fuzzy
sets with different degrees of membership.

2.2 Interpretation of Fuzzy Sets

In fuzzy sets, the concept of fuzziness comes with a precise meaning. Fuzziness primarily
means lack of precise boundaries of a collection of objects and, as such, is an evident mani-
festation of imprecision and a particular type of uncertainty. Let us make some observations
in this regard.

First, it is worth indicating that fuzziness is both conceptually and formally different from
the fundamental concept of probability. In general, it is difficult to foresee the result of tossing
a fair coin once it is impossible to know if either a head or tail will occur for certain. We may,
at most, say that there is a 50% chance for a head or tail to occur, but as soon as the coin falls,
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uncertainty vanishes. But, in the case of a person’s height, imprecision remains. Formally,
fuzzy sets are membership functions that are treated as mappings from a given universe of
discourse to the unit interval as presented in (2.3). In contrast, probability is a set function, a
mapping whose universe is a set of subsets of a domain.

Second, there are differences between fuzziness, generality, and ambiguity. A notion is
general when it applies to a multiplicity of objects and keeps only a common essential
property. An ambiguous notion stands for several unrelated objects. Therefore, from this point
of view fuzziness does not mean either generality or ambiguity and applications of fuzzy sets
exclude these categories. Fuzzy set theory assumes that the universe is well defined and has
its elements assigned to classes by means of a numerical scale.

Applications of fuzzy sets to areas such as data analysis, reasoning under uncertainty, and
decision-making suggest different interpretations of membership grades in terms of similarity,
uncertainty, and preference (Dubois and Prade, 1997; Dubois and Prade, 1998). From the
similarity point of view, A(x) means the degree of compatibility of an element x ∈ X with
representative elements of A. This is the primary and most intuitive interpretation of a fuzzy
set, one that is particularly suitable for data analysis. An example is the case where we question
how to qualify an environment as comfortable when we know that the current temperature
is 25 ◦C. As discussed at the beginning of this chapter, such quantification is a matter of
degree. For instance, assuming a universe of discourse of X = [0,40] and choosing 20 ◦C as
representative of comfortable temperature, we note, Figure 2.4, that the degree at which 25 ◦C
is comfortable is 0.2. In the example, we have adopted piecewise linear decreasing functions
of the distance between temperature values and the representative value 20 ◦C to determine
the corresponding membership degree.

Now let us assume that values of a variable “x” are located within the support of a fuzzy set
A. Then, given a value “v” of X, A(v) expresses a possibility that x = v given that “x” is in A is
all that is known about it. In this situation, the membership degree of a given tentative value
“v” to the class A reflects the degree of plausibility that this value is the same as “x”. This
idea reflects a type of uncertainty because, if the membership degree is high, our confidence
about the value of “x” may still be low, but if the degree is low, then the tentative value may
be rejected as an implausible candidate. The variable labeled by the class A is uncontrollable.
This allows the assignment of fuzzy sets to possibility distributions as presented in possibility
theory (Zadeh, 1978; Zadeh, 1999). For instance, suppose someone said they felt comfortable

°C10 040

1.0 

0.5 

comfortable

20 30

0.2 

25

A

Figure 2.4 Membership function of a fuzzy set of comfortable temperature.
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when watching a soccer game. In this situation the membership degree of a given tentative
temperature value, say 25 ◦C, reflects the degree of plausibility that this value of temperature
is the same as the one when the person felt comfortable. Note that the temperature value felt
is unknown, but there is no question if it did occur or not. Possibility is whether an event may
occur and with what degree. On the contrary, probability is about whether an event will occur.

Finally, assume that A reflects a preference on the values of a variable “x” in X. For instance,
“x” can be a decision variables and fuzzy set A is an elastic constraint characterizing feasible
values and decision-maker preferences. In this case A(v) denotes the grade of preference in
favor of “v” as the value of “x”. This interpretation prevails in fuzzy optimization and decision
analysis. For instance, we may be interested in finding a comfortable value of temperature. The
membership degree of a candidate temperature value “v” reflects our degree of satisfaction
with the particular temperature value chosen. In this situation, the choice of the value is
controllable in the sense that the value being adopted depends on our choice.

2.3 Membership Functions and Classes of Fuzzy Sets

Formally speaking, any function A : X → [0,1] could be qualified to serve as a membership
function describing the corresponding fuzzy set. In practice, the form of the membership
functions should be reflective of the problem at hand for which we construct fuzzy sets. They
should reflect our perception (semantics) of the concept to be represented and further used in
problem solving, the level of detail we intend to capture, and a context in which the fuzzy sets
are going to be used. It is also essential to assess the type of fuzzy set from the standpoint of
its suitability when handling the ensuing optimization procedures. With these criteria in mind,
we elaborate on the most commonly used categories of membership functions. All of them are
defined in the universe of real numbers, that is, X = R.

Triangular membership functions. These are described by their piecewise linear segments
described in the form

A(x, a, m, b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ a
x − a

m − a
if x ∈ [a, m]

b − x

b − m
if x ∈ [m, b]

0 if x ≥ b

(2.4)

Using more concise notation, the above expression can be written in the form A(x, a, m, b) =
max{min[(x − a)/(m − a), (b − x)/(b − m)], 0}. The meaning of the parameters is straight-
forward: “m” denotes a modal (typical) value of the fuzzy set while “a” and “b” are the lower
and upper bounds, respectively. They could be sought as the extreme elements of the universe
of discourse that delineate the elements belonging to A with nonzero membership degrees.

Triangular fuzzy sets (membership functions) are the simplest possible models of grades of
membership as they are fully defined by only three parameters. As mentioned, the semantics
is evident as the fuzzy sets are expressed on a basis of knowledge of the spreads of the
concepts and their typical values. The linear change in the membership grades is the simplest
possible model of membership one could think of. Taking the absolute value of the derivative
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of the triangular membership function, which could be sought as a measure of sensitivity of
A, |dA/dx|, we conclude that its sensitivity is constant for each of the linear segments of the
fuzzy set.

Trapezoidal membership functions. These are piecewise linear functions characterized
by four parameters, “a”, “m”, “n”, and “b”, each of which defines one of the four linear parts
of the membership function. They assume the following form:

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < a
x − a

m − a
if x ∈ [a, m]

1 if x ∈ [m, n]
b − x

b − n
if x ∈ [n, b]

0 if x > b

(2.5)

Using an equivalent notation, we can rewrite A as follows:

A(x, a, m, n, b) = max{min[(x − a)/(m − a), 1, (b − x)/(b − n)], 0}

�-membership functions. These are expressed in the following form:

A(x) =
{

0 if x ≤ a
1 − exp[−k(x − a)2] if x > a

or A(x) =
⎧⎨
⎩

0 if x ≤ a
k(x − a)2

1 + k(x − a)2
if x > a

(2.6)

where k > 0.
S-membership functions. These functions are of the form

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ a

2

(
x − a

b − a

)2

if x ∈ [a, m]

1 − 2

(
x − b

b − a

)2

if x ∈ [m, b]

1 if x > b

(2.7)

The point m = (a + b)/2 is the crossover point of the S-function.
Gaussian membership functions. These membership functions are described by the fol-

lowing relationship:

A(x, m, σ ) = exp

(
− (x − m)2

σ 2

)
(2.8)
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Gaussian membership functions are described by two important parameters. The modal value
(m) represents the typical element of A while s denotes a spread of A. Higher values of s
correspond to larger spreads of the fuzzy sets.

Exponential-like membership functions. These membership functions are described in
the form

A(x) = 1

1 + k(x − m)2
k > 0 (2.9)

The spread of the exponential-like membership function increases as the values of “k”
get lower.

2.4 Fuzzy Numbers and Intervals

In practice, exact values of parameters of models are not so common. Normally uncertainty
and imprecision arise due to lack of knowledge and incomplete information reflected in system
structure, parameters, inputs, and possible bounds.

Fuzzy numbers and intervals model imprecise quantities and capture our innate concept of
approximate numbers such as about 5, around 10, and intervals such as below 100, around 2
and 3, above 10. Fuzzy quantities are intended to model our intuitive notions of approximate
numbers and intervals as a generalization of numbers and intervals, as Figure 2.5 suggests. In
general, fuzzy quantities summarize numerical data by means of linguistically labeled fuzzy
sets whose universe is R, the set of real numbers. For instance, if a value of a real variable
is certain, say x = 2.5, then we can represent it as a certain quantity, a singleton whose

1  1 

2.5 2.5 

1  1 

2.2 

2.2 3.0 

2.2 3.0 

real number 
2.5 

fuzzy number 
about 2.5 

real interval 
[2.2, 3.0] 

fuzzy interval 
around [2.2, 3.0] 

2.5 

A2.5

A[2.2, 3.0] 

Aabout

Aaround 

 R R

 R R

Figure 2.5 Examples of quantities and fuzzy quantities.
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characteristic function is A2.5(x) = 1 if x = 2.5 and A2.5 (0) = 0 otherwise, as shown in
Figure 2.5. In this situation, the quantity has both a precise value and precise meaning. If we
are uncertain of the value of the variable, but certain about its bounds, then the quantity is
uncertain and can be represented, for instance, by the closed interval [2.2,3.0], a set whose
characteristic function is A[2.2,3.0](x) = 1 if x ∈ [2.2,3.0], and A[2.2,3.0](x) = 0 otherwise. Here
the variable is characterized by an imprecise value, but its meaning is precise. When bounds
also are not sharply defined, the quantities become fuzzy numbers or intervals, respectively,
as Figure 2.5 illustrates. In these cases both fuzzy numbers and intervals also are quantities
with precise meaning, but with imprecise values.

2.5 Linguistic Variables

One can often deal with variables describing phenomena of physical or human systems
assuming a finite, quite small number of descriptors.

We often describe observations about a phenomenon by characterizing its states which
we naturally translate in terms of the idea of a variable. For instance, we may refer to an
environment through words such as comfortable, sunny, and nice. In particular, we can qualify
the environmental condition through the variable temperature with values chosen in a range
such as the interval X = [0,40]. Alternatively, temperature could be qualified using labels such
as cold, comfortable, and warm. A precise numerical value such as 20 ◦C seems simpler to
characterize the environment than the ill-defined term comfortable. But the linguistic label
comfortable is a choice of one out of three values, whereas 20 ◦C is a choice of one out of many.
The statement could be strengthened if the underlying meaning of comfortable is conceived
as about 20 ◦C. While the numerical quantity 20 ◦C can be visualized as a point in a set, the
linguistic temperature value comfortable can be viewed as a collection of temperature values
in a bounded region centered at 20 ◦C. The label comfortable can, therefore, be regarded as
a form of information summarization, called granulation, because it serves to approximate a
characterization of ill-defined or complex phenomena (Zadeh, 1975). In these circumstances,
fuzzy sets provide a way to map a finite term set to a linguistic scale whose values are fuzzy
sets. In general, it is difficult to find incontestable thresholds, such as 15 and 30 ◦C for instance,
which allows us to assign cold = [0,15], comfortable = [15,30], and warm = [30,40]. Cold,
comfortable, and warm are fuzzy sets instead of single numbers or sets (intervals). Since
fuzzy sets concern the representation of collections with unclear boundaries by means of
membership functions taking values in an ordered set of membership values, they provide a
means to interface numerical and linguistic quantities, a way to link computing with words
and granular computing.

In contrast to the idea of numerical variables as commonly used, the notion of linguistic vari-
able can be regarded as a variable whose values are fuzzy sets. In general, linguistic variables
may assume values consisting of words or sentences expressed in a certain language (Zadeh,
1999). Formally, a linguistic variable is characterized by a quintuple 〈X, T (X ), X, G, M〉
where its components are as follows:

X – the name of the variable;

T(X) – a term set of X whose elements are labels L of linguistic values of X;
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G – a grammar that generates the names of X;

M – a semantic rule that assigns to each label L ∈ T(X) a meaning whose realization
is a fuzzy set on the universe X whose base variable is X.

Example 2.1. Let us consider the linguistic variable of temperature. Here the linguistic
variable is formalized by explicitly identifying all the components of the formal definition:

X = temperature, X = [0,40].

T (temperature) = {cold, comfortable, warm}.

M (cold) → C, M (comfortable) → F, and M (warm) → W where C, F, and W
are fuzzy sets whose membership functions are illustrated in Figure 2.6.

The notion of the linguistic variable plays a major role in applications of fuzzy sets. In fuzzy
logic and approximate reasoning, truth values can be viewed as linguistic variables whose
truth values form the term set as, for example, true, very true, false, more or less true, and
the like.

Fuzzy sets can be cast in the more general setting of granular computing (Bargiela and
Pedrycz, 2003; Pedrycz, 2005; Zadeh, 1997) in which processing is realized in terms of
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Figure 2.6 An example of the linguistic variable of temperature.
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information granules – conceptual entities being a result of a certain abstraction we exercise
to perceive real-world phenomena and build their effective models. The granules can be
formally represented as sets, fuzzy sets, rough sets (Pawlak, 1982), or shadowed sets where
the representation depends upon the nature of the problem itself.

2.6 A Generic Characterization of Fuzzy Sets: Some Fundamental
Descriptors

In principle, any function A : X → [0,1] becomes potentially eligible to represent the member-
ship function of fuzzy set A. In practice, however, the type and shape of membership functions
should fully reflect the nature of the underlying phenomenon we are interested in describing.
Thus we require that fuzzy sets should be semantically sound, which implies that the selection
of membership functions needs to be guided by the character of the application and the nature
of the problem we intend to solve.

Given the enormous diversity of potentially useful (namely, semantically sound) member-
ship functions, there are certain common characteristics (descriptors) that are conceptually and
operationally qualified to capture the essence of the granular constructs represented in terms
of fuzzy sets. In what follows, we provide a list of the descriptors commonly encountered
in practice.

Normality: We say that the fuzzy set A is normal if its membership function attains one,
that is,

sup
x∈X

A(x) = 1 (2.10)

If this property does not hold, we call the fuzzy set subnormal. An illustration of the corre-
sponding fuzzy set is shown in Figure 2.7. The supremum (sup) in the above expression is
also referred to as the height of the fuzzy set A, hgt(A) = sup

x∈X
A(x) = 1.

The normality of A has a simple interpretation: by determining the height of the fuzzy set,
we identify an element with the highest membership degree. The value of the height being
equal to one states that there is at least one element in X whose typicality with respect to A
is the highest one and which could be sought as fully compatible with the semantic category
presented by A. A subnormal fuzzy set whose height is lower than one, namely hgt(A) < 1,

X

1

X

1
hgt(A)

hgt(A)

 A  A

Figure 2.7 Examples of normal and subnormal fuzzy sets.
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means that the degree of typicality of elements in this fuzzy set is somewhat lower (weaker) and
we cannot identify any element in X which is fully compatible with the underlying concept.
Generally, while forming a fuzzy set we expect its normality (otherwise, why would such a
fuzzy set for which there are no typical elements come into existence in the first place?).

Normalization: The normalization operation, Norm(A), is a transformation mechanism that
is used to convert a subnormal nonempty fuzzy set A into its normal counterpart. This is done
by dividing the original membership function by the height of this fuzzy set, that is,

Norm(A) = A(x)

hgt(A)
(2.11)

While the height describes the global property of the membership grades, the following notions
offer an interesting characterization of the elements of X vis-à-vis their membership degrees.

Support: The support of a fuzzy set A, denoted by Supp(A), is a set of all elements of X
with nonzero membership degrees in A

Supp(A) = {x ∈ X|A(x) > 0} (2.12)

In other words, the support identifies all elements of X that exhibit some association with the
fuzzy set under consideration (by being allocated to A with nonzero membership degrees).

Core: The core of a fuzzy set A, Core(A), is a set of all elements of the universe that are
typical for A, that is, they come with membership grades equal to one,

Core(A) = {x ∈ X|A(x) = 1} (2.13)

The support and core are related in the sense that they identify and collect elements belonging
to the fuzzy set but at two different levels of membership. Given the character of the core and
support, we note that all elements of the core of A are subsumed by the elements of the support
of this fuzzy set. Note that both the support and core are sets, not fuzzy sets, Figure 2.8. We
refer to them as the set-based characterizations of fuzzy sets.

X

 1 

Supp(A)

X

 1 

Core(A)

AA 

Figure 2.8 Support and core of A.
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Figure 2.9 Examples of α-cut and strong α-cut.

While the core and support are somewhat extreme (in the sense that they identify the
elements of A that exhibit the strongest and the weakest linkages with A), we may also be
interested in characterizing sets of elements that come with some intermediate membership
degrees. A notion of a so-called α-cut offers here an interesting insight into the nature of
fuzzy sets.

α-cut: The α-cut of a fuzzy set A, denoted by Aα , is a set consisting of the elements of the
universe whose membership values are equal to or exceed a certain threshold level α where
α ∈ [0,1] (Zadeh, 1975; Nguyen and Walker, 1999). Formally speaking, we have Aα = {x ∈
X | A(x) ≥ α}. A strong α-cut differs from the α-cut in the sense that it identifies all elements
in X for which we have the “greater than” relationship satisfied, Aα = {x ∈ X|A(x) > α}. An
illustration of the concept of the α-cut and strong α-cut is presented in Figure 2.9. Both the
support and core are limit cases of α-cuts and strong α-cuts. For α = 0 and the strong α-cut,
we arrive at the concept of the support of A. The threshold α = 1 means that the corresponding
α-cut is the core of A.

Convexity: We say that a fuzzy set is convex if its membership function satisfies the
following condition:

for all x1, x2 ∈ X and all λ ∈ [0,1],

A(λx1 + (1 − λ)x2) ≥ min(A(x1), A(x2)) (2.14)

This relationship states that, whenever we choose a point x on a line segment between x1 and
x2, the point (x, A(x)) is always located above or on the line passing through the two points
(x1, A(x1)) and (x2, A(x2)), Figure 2.10. Note that the membership function is not a convex
function in the traditional sense (Klir and Yuan, 1995).

Let us recall that a set S is convex if, for all x1, x2 ∈ S, then x = λx1 + (1 − λ)x2 ∈ S for all
λ ∈ [0,1]. In other words, convexity means that any line segment identified by any two points
in S is also contained in S. For instance, intervals of real numbers are convex sets. Therefore,
if a fuzzy set is convex, then all of its α-cuts are convex, and, conversely, if a fuzzy set has all
its α-cuts convex, then it is a convex fuzzy set, Figure 2.11. Thus we may say that a fuzzy set
is convex if all its α-cuts are convex (intervals).

Fuzzy sets can be characterized by counting their elements and bringing a single numeric
quantity as a meaningful descriptor of this count. While in the case of sets this sounds
convincing, here we have to take into account different membership grades. In its simplest
form this counting comes under the name of cardinality.
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Α(λ x1+ (1-λ)x2)

A

Figure 2.10 An example of a convex fuzzy set A.

Cardinality: Given a fuzzy set A defined in a finite or countable universe X, its cardinality,
denoted by card(A), is expressed as the following sum:

Card(A) =
∑
x∈X

A(x) (2.15)

or alternatively as the following integral:

Card(A) =
∫
X

A(x) dx (2.16)

(we assume that the integral shown above does make sense). The cardinality produces a
count of the number of elements in the given fuzzy set. As there are different degrees of
membership, the use of the sum here makes sense as we keep adding contributions coming
from the individual elements of this fuzzy set. Note that, in the case of sets, we count the
number of elements belonging to the corresponding sets. We also use the alternative notation
of Card(A) = |A|, and refer to it as a sigma count (σ -count).

The cardinality of fuzzy sets is explicitly associated with the concept of granularity of
information granules realized in this manner. More descriptively, the more elements of A we
encounter, the higher the level of abstraction supported by A and the lower the granularity of the

X

1
A

α 

Aα X

1
A

α 

Aα

Figure 2.11 Examples of convex and nonconvex fuzzy sets.
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construct. Higher values of cardinality come with a higher level of abstraction (generalization)
and lower values of granularity (specificity).

Example 2.2. Consider fuzzy sets A = (1.0, 0.6, 0.8, 0.1), B = (0.1, 0.8, 1.0, 0.1), and
C = (0.6, 0.9, 1.0, 1.0) defined in the same space. We can order them in a linear fash-
ion by computing their cardinalities. Here we obtain: Card(A) = 2.5, Card(B) = 2.0, and
Card(C) = 3.5. In terms of the levels of abstraction, C is the most general, A lies in between,
and B is the least general.

So far we have discussed the properties of a single fuzzy set. The operations to be studied look
into the characterization of relationships between two fuzzy sets.

Equality: We say that two fuzzy sets A and B defined in the same universe X are equal if
and only if their membership functions are identical, meaning that

A(x) = B(x) ∀x ∈ X (2.17)

Inclusion: Fuzzy set A is a subset of B (A is included in B), denoted by A ⊆ B, if and only if
every element of A also is an element of B. This property expressed in terms of membership
degrees means that the following inequality is satisfied:

A(x) ≤ B(x) ∀x ∈ X (2.18)

An illustration of these two relationships in the case of sets is shown in Figure 2.12. In order
to satisfy the relationship of inclusion, we require that the characteristic functions adhere to
(2.18) for all elements of X. If the inclusion is not satisfied, even for a single point of X, the
inclusion property does not hold.

If A and B are fuzzy sets in X, we have adopted the same definition of inclusion as that
available from set theory.

Interestingly, the definitions of equality and inclusion exhibit an obvious dichotomy as the
property of equality (or inclusion) is satisfied or not satisfied. While this quantification could
be acceptable in the case of sets, fuzzy sets require more attention in this regard given the
membership degrees involved in expressing the corresponding definitions.

X

1

B
A

X

1

B

A

Figure 2.12 Set inclusion: (a) A ⊂ B and (b) inclusion not satisfied as A �⊂ B.
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Energy measure of fuzziness: For a fuzzy set A in X, denoted by E(A), this measure is a
functional of the membership degrees

E(A) =
n∑

i=1

e[A(xi )] (2.19)

if Card(X) = n. In the case of infinite space, the energy measure of fuzziness is expressed as
the integral

E(A) =
∫
X

e(A(x)) dx (2.20)

The mapping e : [0,1] → [0,1] is a functional monotonically increasing over [0,1] with the
boundary conditions e(0) = 0 and e(1) = 1.

As the name of this measure stipulates, its role is to quantify a sort of energy associated with
the given fuzzy set. The higher the membership degrees, the more essential their contributions
to the overall energy measure. In other words, by computing the energy measure of fuzziness
we can compare fuzzy sets in terms of their overall count of membership degrees.

A particular form of the above functional comes with the identity mapping e(u) = u for all
u in [0,1]. We can see that, in this case, expressions (2.19) and (2.20) reduce to the cardinality
of A:

E(A) =
n∑

i=1

A(xi ) = Card(A) (2.21)

The energy measure of fuzziness forms a convenient way of expressing a total mass of the
fuzzy set. Since Card(�) = 0 and Card(X) = n, the more a fuzzy set differs from the empty
set, the larger is its mass. Indeed, rewriting (2.21) we obtain

E(A) =
n∑

i=1

A(xi ) =
n∑

i=1

|A(xi ) − �(xi )| = d(A,�) = Card(A) (2.22)

where d(A, �) is the Hamming distance between fuzzy set A and the empty set.
While the identity mapping (e) is the simplest alternative one could think of, in general,

we can envision an infinite number of possible options. For instance, one could consider
functionals such as e(u) = u p, p > 0, and e(u) = sin(πu/2). Note that by choosing a certain
form of the functional, we accentuate a varying contribution of different membership grades.
For instance, depending upon the form of “e”, the contribution of the membership grades close
to one could be emphasized while those located close to zero could be very much reduced.

Entropy measure of fuzziness: For A this measure, denoted by H(A), is built upon the
entropy functional (h) and comes in the form (De Luca and Termini, 1972)

H (A) =
n∑

i=1

h[A(xi )] (2.23)
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or in the continuous case of X

H (A) =
∫
X

h(A(x)) dx (2.24)

where h : [0,1] → [0,1] is a functional such that: (1) it is monotonically increasing in
[0,1/2] and monotonically decreasing in [1/2,1]; and (2) it comes with the boundary conditions
h(0) = h(1) = 0 and h(1/2) = 1. This functional emphasizes membership degrees around 1/2;
in particular, the value of 1/2 is stressed to be the most “unclear” (causing the highest level of
hesitation with its quantification by means of the proposed functional).

Specificity of fuzzy sets: Quite often, we face the issue of quantifying how much a single
element of a universe could be regarded as representative of a fuzzy set. If this fuzzy set is
a singleton

A(x) =
{

1 if x = x0

0 if x �= x0
(2.25)

then there is no hesitation in selecting x0 as the sole representative of A. We say that A is
very specific and its choice comes with no hesitation. At the other extreme, if A covers the
entire universe X and embraces all elements with the membership grade being equal to one,
the choice of the only one representative of A comes with a great deal of hesitation which
is triggered by a lack of specificity faced in this problem. These two extreme situations are
portrayed in Figure 2.13. Intuitively, we sense that the specificity is a concept that relates quite
visibly to the cardinality of a set (Yager, 1983). The higher the cardinality of the set (that is,
the more evident its abstraction), the lower its specificity. Having said that, we are interested
in developing a measure which might be able to capture this effect of hesitation.

2.7 Geometric Interpretation of Sets and Fuzzy Sets

In the case of finite universes of discourse X, we can arrive at an interesting and geometrically
appealing interpretation of sets and fuzzy sets (Kosko, 1992). Such an interpretation is also
helpful in contrasting sets and fuzzy sets. It visualizes the interrelationships between them.

X

1

x0

A

X

1

A

Figure 2.13 Examples of two extreme cases of sets exhibiting distinct levels of specificity.
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Figure 2.14 Sets and fuzzy sets represented as points in the unit square.

The geometric interpretation is also helpful in casting the decision-making problems and their
solutions in some illustrative geometric setting. For the n-element space X, any set there can
be represented as an n-dimensional vector x with 0–1 values. The cardinality of the family of
all sets defined in X is 2n. The ith component of vector x is the value of the corresponding
characteristic function of the ith element in the respective set. In the simplest case when
X = {x1, x2}; n = 2, the family of sets comprises the following elements: �, {x1}, {x2}, and
{x1, x2}. The cardinality of X is 22 = 4. Thus each of the four elements of this family can
be represented by a two-dimensional vector, say � = (0, 0), {x1} = (1, 0), {x2} = (0, 1),
and {x1, x2} = (1, 1). Those sets are located at the corners of the unit square, as illustrated in
Figure 2.14.

Due to the values of the membership grades assuming any values in [0,1], fuzzy sets,
being two-dimensional vectors, are distributed throughout the entire unit square. For instance,
referring to Figure 2.14, fuzzy set A is represented as vector x = (0.25, 0.75). A family of fuzzy
sets over X = {x1, x2} occupies the whole shaded area, including the borders and corners of
the unit square. In general, proceeding with higher dimensionality of the space, we end up with
a unit cube (n = 3) and unit hypercubes (for the dimensionality of the space of dimensionality
higher than three).

2.8 Fuzzy Sets and the Family of α-cuts

Fuzzy sets offer an important conceptual and operational feature of information granules by
endowing their formal models with gradual degrees of membership. We are interested in
exploring relationships between fuzzy sets and sets. While sets come with the binary (yes–no)
model of membership, it could be worth investigating whether they are indeed some special
cases of fuzzy sets and, if so, in which sense a set could be treated as a suitable approximation
of some given fuzzy set. This could shed light on some related processing aspects. To gain a
detailed insight into this matter, we recall here a concept of an α-cut and a family of α-cuts
and show that they relate to fuzzy sets in an [0,1] → [0,1] intuitive and transparent way. Let
us revisit the semantics of α-cuts: an α-cut of A embraces all elements of the fuzzy set whose
degrees of belongingness (membership) to this fuzzy set are at least equal to α. In this sense,
by selecting a sufficiently high value of α, we identify (tag) elements of A that belong to it
to a significant extent and thus could be sought as those highly representative of the concept



P1: OTA/XYZ P2: ABC
c02 JWST012-Pedrycz September 17, 2010 17:24 Printer Name: Yet to Come

Notions and Concepts of Fuzzy Sets: An Introduction 39

conveyed by A. Those elements of X exhibiting lower values of the membership grades are
suppressed, so this allows us to selectively focus on the elements with the highest degrees of
membership while dropping the others.

For α-cuts Aα the following properties hold:

(a) A0 = X

(b) If α ≤ β then Aα ⊇ Aβ

(2.26)

The first property shows that if we allow for the zero value of α, then all elements of X
are included in this α-cut (0-cut, to be more specific). The second property underlines the
monotonic character of the construct: higher values of the threshold imply that more elements
are accepted in the resulting α-cuts. In other words, we can say that the level sets (α -cuts) Aα

form a nested family of sets indexed by some parameter (α). If we consider the limit value of
α, that is, α = 1, the corresponding α -cut is nonempty if and only if A is a normal fuzzy set.

It is also worth remembering that α-cuts, in contrast to fuzzy sets, are sets. We showed
how, for some given fuzzy set, its α-cut could be formed. An interesting question arises as
to the construction that could be realized when moving in the opposite direction. Could we
“reconstruct” a fuzzy set on the basis of an infinite family of sets? The answer to this problem
is offered in what is known as the representation theorem for fuzzy sets (Klir and Yuan, 1995).

Theorem: Let {Aα}, α ∈ [0,1], be a family of sets defined in X such that they satisfy the
following properties:

(a) A0 = X.
(b) If α ≤ β then Aα ⊇ Aβ .
(c) For the sequence of threshold values α1 ≤ α2 ≤ . . . such that lim(αn) = α, we have

Aα =
∞⋂

n=1

Aαn

then there exists a unique fuzzy set B defined in X such that Bα = Aα for each α ∈ [0,1].

In other words, the representation theorem states that any fuzzy set A can be uniquely repre-
sented by an infinite family of its α-cuts. The following reconstruction expression shows how
the corresponding α-cuts contribute to the formation of the corresponding fuzzy set:

A =
⋃
α>0

αAα (2.27)

that is,

A(x) = sup
α∈(0,1]

(α · Aα(x)) (2.28)

where Aα denotes the corresponding α-cut.
The essence of this construct is that any fuzzy set can be uniquely represented by the

corresponding family of nested sets (that is, ordered by the inclusion relation). An illustration
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Figure 2.15 Fuzzy set A, examples of some of its α-cuts (a) and a representation of A through the
corresponding family of sets (α-cuts) (b).

of the concept of the α-cut and the way in which the representation of the corresponding fuzzy
set is realized is shown in Figure 2.15.

More descriptively, we can say that fuzzy sets can be reconstructed by a family of sets.
Apparently, we need a family of sets (intervals, in particular) to capture the essence of a
single fuzzy set. The reconstruction scheme illustrated in Figure 2.15 is self-explanatory in
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this regard. In more descriptive terms, we can look at the expression offered by (2.29) as a
way of decomposing A into a series of layers (indexed sets) calibrated by the values of the
associated levels of α.

For the finite universe of discourse, dim(X) = n, we encounter a finite number of
membership grades and subsequently a finite number of α-cuts. This finite family of α-cuts is
then sufficient to fully “represent” or reconstruct the original fuzzy set.

Example 2.3. To illustrate the essence of α-cuts and the ensuing reconstruction, let us consider
a fuzzy set with a finite number of membership grades, A = [0.8 1.0 0.2 0.5 0.1 0.0 0.0 0.7].
The corresponding α-cuts of A are equal to

α = 1.0A1.0 = [0 1 0 0 0 0 0 0]

α = 0.8A0.8 = [1 1 0 0 0 0 0 0]

α = 0.7A0.7 = [1 1 0 0 0 0 0 1]

α = 0.5A0.5 = [1 1 0 1 0 0 0 1]

α = 0.2A0.2 = [1 1 1 1 0 0 0 1]

α = 0.1A0.1 = [1 1 1 1 1 0 0 1]

We can clearly see the layered character of the consecutive α-cuts indexed by the sequence of
the increasing values of α. Because of the finite number of membership grades, the reconstruc-
tion realized in terms of (2.28) returns the original fuzzy set (which is possible given the finite
space over which the original fuzzy set has been defined) A(x) = max(1.0A1.0(x), 0.8A0.8(x),
0.7A0.7(x), 0.5A0.5(x), 0.2A0.2(x), 0.1A0.1(x)).

Considering a finite number of α-cuts, an important question arises as to the choice of values
of such thresholds (values of α) so that a fuzzy set could be approximated to the highest
extent. This is a problem formulated and solved with the aid of population-based optimization
in Pedrycz, Dong, and Hirota (2009). Refer also to Bodjanova (2006).

2.9 Operations on Fuzzy Sets

Similarly as in set theory, we operate on fuzzy sets to obtain new fuzzy sets. The operations must
possess properties to match intuition, to comply with the semantics of the intended operation,
and to be flexible to fit application requirements. This section covers set operations beginning
with early fuzzy set operations and continuing with their generalization, interpretations, formal
requirements, and realizations. We emphasize complements, triangular norms, and triangular
conorms as unifying, general constructs of the complement, intersection, and union operations.
Combinations of fuzzy sets to provide aggregations are also essential when operating with
fuzzy sets. Analyses of the fundamental properties and characteristics of operations with fuzzy
sets are discussed thoroughly.

It is instructive to start with the familiar operations of intersection, union, and complement
encountered in set theory. They also exhibit some similarities with the operations commonly
used in set theory. For instance, consider two sets A = {x ∈ R | 1 ≤ x ≤ 3} and B = {x ∈ R |



P1: OTA/XYZ P2: ABC
c02 JWST012-Pedrycz September 17, 2010 17:24 Printer Name: Yet to Come

42 Fuzzy Multicriteria Decision-Making: Models, Methods and Applications
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Figure 2.16 Intersection of sets represented in terms of their characteristic functions.

2 ≤ x ≤ 4}, both being closed intervals on the real line. Their intersection is a set A ∩ B =
{x ∈ R | 2 ≤ x ≤ 3}. Figure 2.16 illustrates the intersection operation represented in terms of
the characteristic functions of A and B. Looking at the values of the characteristic function of
A ∩ B that results when comparing the individual values of A(x) and B(x) at each x ∈ R, we
note that these are taken as the minimum between the values of A(x) and B(x).

In general, given the characteristic functions of A and B, the characteristic function of their
intersection A ∩ B is computed in the form

(A ∩ B)(x) = min(A(x), B(x)) ∀x ∈ X (2.29)

where (A ∩ B)(x) denotes the characteristic function of the intersection A ∩ B.
We now consider the union of sets A and B and express its characteristic function in terms

of the respective characteristic functions of A and B. For example, if A and B are the same
intervals as presented before, then A ∪ B = {x ∈ R | 1 ≤ x ≤ 4}. We note that the value
of the characteristic function of the union is taken as the maximum of corresponding values
of the characteristic functions A(x) and B(x) taken at each point of the universe of discourse,
Figure 2.17.

Therefore, given the characteristic functions of A and B, we determine the characteristic
function of the union to be computed as

(A ∪ B)(x) = max(A(x), B(x)) ∀x ∈ X (2.30)

where (A ∪ B)(x) denotes the characteristic function of the intersection A ∪ B.

1
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1
A∪B

R4 32 1 

A B

4 3 2 14321 000

A    B       A∪B

Figure 2.17 Union of two sets expressed in terms of their characteristic functions.
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Figure 2.18 Complement of a set in terms of its characteristic function.

Likewise, as Figure 2.18 suggests, the complement A of set A, expressed in terms of its
characteristic function, is the complement of the characteristic function of A. For instance, if
A = {x ∈ R | 1 ≤ x ≤ 3}, which is the same interval as discussed before, then A = {x ∈ R|x
< 1} ∪ {x ∈ R|x > 3}, see Figure 2.18.

In general, the characteristic function of the complement of a set A is given in the form

A(x) = 1 − A(x) ∀x ∈ X (2.31)

One may anticipate that, since sets are particular instances of fuzzy sets, the operations of
intersection, union, and complement as previously defined should equally well apply to fuzzy
sets. Indeed, when we used membership functions in expressions (2.29)–(2.31), these formulas
served as definitions of intersection, union, and complement of fuzzy sets. An illustration of
these operations is included in Figure 2.19.

2.9.1 Triangular Norms and Triangular Conorms as Models
of Operations on Fuzzy Sets

Operations on fuzzy sets concern manipulation of their membership functions. Therefore
they are domain dependent and different contexts may require their different realizations. For
instance, since operations provide ways to combine information, they can be performed differ-
ently in image processing, control, and diagnostic systems, for example. When contemplating
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Figure 2.19 Operations on fuzzy sets realized with the use of min, max, and complement functions.
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the realization of the operations of intersection and union of fuzzy sets, we should require
satisfaction of the following intuitively appealing properties:

(a) commutativity;
(b) associativity;
(c) monotonicity;
(d) identity.

The last requirement of identity takes on a different form depending on the operation. More
specifically, in the case of intersection, we anticipate that an intersection of any fuzzy set with
the universe of discourse X should return this fuzzy set. For the union operations, the identity
implies that the union of any fuzzy set and an empty fuzzy set returns the fuzzy set.

Thus any binary operator [0,1] × [0,1] → [0,1], which satisfies the collection of the require-
ments outlined above, can be regarded as a potential candidate for realizing the intersection
or union of fuzzy sets. Note also that identity acts as a boundary condition, meaning that
when confined to sets, the above stated operations return the same results as encountered
in set theory. In general, idempotency is not required; however, the realizations of union and
intersection could be idempotent as this happens for the operations of minimum and maximum
where min(a, a) = a and max(a, a) = a.

In the theory of fuzzy sets, triangular norms offer a general class of operators of intersection
and union. For instance, t-norms generalize the intersection of fuzzy sets. Given a t-norm, a
dual operator called a t-conorm (or s-norm) can be derived using the relationship x S y = 1 –
(1 – x) T (1 – y), ∀ x, y ∈ [0,1], the De Morgan law, but the t-conorm can also be described
by an independent axiomatic system (Valverde and Ovchinnikov, 2008). Triangular conorms
provide generic models for the union of fuzzy sets.

A triangular norm, t-norm in brief, is a binary operation T: [0,1] × [0,1] → [0,1] that
satisfies the properties

(a) Commutativity: a T b = b T a
(b) Associativity: a T (b T c) = (a T b) T c
(c) Monotonicity: if b ≤ c then a T b ≤ a T c
(d) Boundary conditions: a T 1 = a and a T 0 = 0

where a, b, c ∈ [0,1].
Let us elaborate on the meaning of these requirements vis-à-vis the use of t-norms as models

of operators of the union and intersection of fuzzy sets. There is a one-to-one correspon-
dence between the general requirements outlined in the previous section and the properties
of t-norms. The first three reflect the general character of set operations. Boundary condi-
tions stress the fact that all t-norms attain the same values at boundaries of the unit square
[0,1] × [0,1]. Thus, for sets, any t-norm produces the same result that coincides with the
one we could have expected in set theory when dealing with the intersection of sets, that is,
A ∩ X = A and A ∩ � = �. Some commonly encountered examples of t-norms include the
following operations:

(a) Minimum: a Tm b = min(a, b) = a ∧ b
(b) Product: a Tp b = ab
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(c) Lukasiewicz: a Tl b = max(a + b – 1, 0)
(d) Drastic product:

a Td b =
⎧⎨
⎩

a if b = 1
b if a = 1
0 otherwise

In general, t-norms cannot be linearly ordered. One can demonstrate that the min (Tm) t-norm
is the largest t-norm, while the drastic product is the smallest one. They form the lower and
upper bounds of the t-norms in the following sense:

a Td b ≤ a T b ≤ a Tm b = min(a, b) (2.32)

Triangular conorms are functions S: [0,1] × [0,1] → [0,1] that serve as generic realizations
of the union operator on fuzzy sets. Similar to triangular norms, conorms provide the highly
desirable modeling flexibility needed to construct fuzzy models. Triangular conorms can be
viewed as dual operators to the t-norms and, as such, are explicitly defined with the use of the
De Morgan laws. We may characterize them in a fully independent fashion by offering the
following definition.

A triangular conorm (s-norm) is a binary operation S: [0,1] × [0,1] → [0,1] that satisfies
the following requirements:

(a) Commutativity: a S b = b S a
(b) Associativity: a S (b S c) = (a S b) S c
(c) Monotonicity: if b ≤ c then a S b ≤ a S c

Boundary conditions: a S 0 = a and a S 1 = 1

where a, b, c ∈ [0,1].
One can show that S: [0,1] × [0,1] → [0,1] is a t-conorm if and only if (iff) there exists a

t-norm (dual t-norm) such that, ∀a, b ∈ [0,1], we have

a S b = 1 − (1 − a) T (1 − b) (2.33)

For the corresponding dual t-norm we have

a T b = 1 − (1 − a) S (1 − b) (2.34)

The duality expressed by (2.33) and (2.34) can be viewed as an alternative definition of
t-conorms. This duality allows us to deduce the properties of t-conorms on the basis of the
analogous properties of t-norms. Note that after rewriting (2.33) and (2.34), we obtain

(1 − a) T (1 − b) = 1 − a S b (2.35)

(1 − a) S (1 − b) = 1 − a T b (2.36)
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These two relationships can be expressed symbolically as

A ∩ B = A ∪ B (2.37)

A ∪ B = A ∩ B (2.38)

that are nothing more than the De Morgan laws.
The boundary conditions mean that all t-conorms behave similarly at the boundary of the

unit square [0,1] × [0,1]. Thus, for sets, any t-conorm returns the same result as encountered
in set theory.

A list of commonly used t-conorms includes the following examples:

(a) Maximum:

a Sm b = max(a, b) = a ∨ b (2.39)

(b) Probabilistic sum:

a Sp b = a + b − ab (2.40)

(c) Lukasiewicz:

a Sl b = min(a + b, 1) (2.41)

(d) Drastic sum:

a Sd b =
⎧⎨
⎩

a if b = 0
b if a = 0
1 otherwise

(2.42)

2.9.2 Negations

Negation is a single-argument operation which is a generalization of the complement operation
encountered in set theory. More formally, by a negation we mean a function N: [0,1] → [0,1]
satisfying the following conditions:

Monotonicity: N is nonincreasing

Boundary conditions: N (0) = 1 and N (1) = 0

If the function N is continuous and decreasing, the negation is called strict (Fodor, 1993). If,
in addition, a strict negation is involutive, that is,

N (N (x)) = x ∀x ∈ [0, 1] (2.43)

it is called strong.
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Two realizations of the negation operator are

N (x) = w
√

1 − xw w ∈ (0,∞) (2.44)

N (x) = 1 − x

1 + λx
λ ∈ (−1,∞) (2.45)

Interestingly, if in the above expressions we set w = 1 or λ = 0, these realizations of the
negation return the standard complement function, that is, N(x) = 1 – x.

It is worth noting that negation is a logic operation but not a model of antonyms encountered
in natural language (Kim, Kim, and Park, 2000).

2.10 Fuzzy Relations

Relations represent and quantify associations between objects. They provide a fundamental
vehicle to describe interactions and dependencies between variables, components, modules,
and so on. Fuzzy relations generalize the concept of relations in the same way as fuzzy
sets generalize the fundamental idea of sets (Kandel and Yelowitz, 1974; Naessens, Meyer,
and De Baets, 2002; Tsabadze, 2008). Fuzzy relations are highly instrumental in problems
of information retrieval, pattern classification, control, and decision-making. In particular,
in decision-making, the notion of fuzzy relations is significant visibility. In what follows,
we introduce the idea of fuzzy relations, present some illustrative examples, discuss the main
properties of fuzzy relations, and provide some interpretation. The discussed properties exhibit
interesting linkages with the essentials of decision-making where they come with some useful
characterizations of the underlying decision processes and decision-makers involved there.

2.10.1 The Concept of Relations

Before proceeding with fuzzy relations, we present a few introductory lines on relations.
Relations capture associations between objects. For instance, consider the space of documents
X and a space of keywords Y that these documents contain. Now form a Cartesian product of
X and Y, that is, X × Y. Recall that the Cartesian product of X and Y, denoted X × Y, is the
set of all pairs (x, y) such that x ∈ X and y ∈ Y. We define a relation R as the set of pairs of
documents and keywords, R = {(di, wj) | di ∈ X and wj ∈ Y}. In terms of the characteristic
function we express this as follows: R(di, wj) = 1 if keyword wj is in document di, and
R(di, wj) = 0 otherwise. In decision-making, situations and actions are related: to each situation
(state of nature) we assign a collection of pertinent actions which are of interest.

More generally, a relation R defined over the Cartesian product of X and Y is a collection
of selected pairs (x, y) where x ∈ X and y ∈ Y. Equivalently, it is a mapping

R : X × Y → {0, 1} (2.46)

The characteristic function of R is such that if R(x, y) = 1, then we say that the two elements
x and y are related. If R(x, y) = 0, we say that these two elements (x and y) are unrelated. For
example, suppose that X = Y = {2, 4, 6, 8}. The relation “equal to” formed over X × X is
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Figure 2.20 Relation “equal to” and its characteristic function.

the set of pairs R = {(x, y) ∈ X × X | x = y} = {(2,2), (4,4), (6,6), (8,8)}, Figure 2.20(a). Its
characteristic function is equal to

R(x, y) =
{

1 if x = y
0 otherwise

(2.47)

A plot of this characteristic function is included in Figure 2.20(b).
Depending on the nature of the universe, which could be either finite or infinite, relations

are represented in a tabular, matrix form, or described analytically. For instance, the set
X = {2, 4, 6, 8} is finite and the relation “equal to” in X × X has a representation as a
4 × 4 matrix

R =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

In general, if X and Y are finite, say Card(X) = n and Card(Y) = m, then R is a n × m
matrix R = [rij] with the entries rij being equal to one if and only if (xi, yj) ∈ R. Elementary
geometry provides examples of relations on infinite universes such as R × R = R2. In these
cases characteristic functions can, in general, be expressed analytically:

R(x, y) =
{

1 if |x | ≤ 17 and |y| ≤ 1
0 otherwise

square

R(x, y) =
{

1 if x2 + y2 = r2

0 otherwise
circle

Relations subsume functions but not vice versa: all functions are relations, but not all relations
are functions. For instance, the relation “equal to” shown above is a function but the relations
“square” and “circle” are not. A relation is a function if and only if for every x in X there is only
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a single element y ∈ Y such that R(x, y) = 1. Therefore, functions are directional constructs,
clearly implying a certain direction, for example, from X to Y, say f : X → Y.

If the mapping “f ” is a function, there is no guarantee that the mapping f −1: Y → X is
also a function, except in some case when f −1 exists. In contrast, relations are direction free
as there is no specific direction identified. Being more descriptive, they can be accessed from
any direction. This makes a significant conceptual and computational difference.

When a space under discussion involves “n” universes as its coordinate, an n-ary relation is
any subset of the Cartesian product of these universes,

R : X1 × X2 × · · · × Xn → {0, 1} (2.48)

If X1, X2, . . . , Xn are finite and Card(X1) = n1 . . . Card(Xn) = n p, then R can be written as
an (n1 × · · · × n p) matrix R = [rij. . .k] with rij. . .k = 1 if and only if (xi , x j , . . . , xk) ∈ R.

2.10.2 Fuzzy Relations

Fuzzy relations generalize the concept of relations by admitting the notion of partial association
between elements of universes. Given two universes X and Y, a fuzzy relation R is any fuzzy
subset of the Cartesian product of X and Y (Zadeh, 1971). Equivalently, a fuzzy relation on
X × Y is a mapping

R : X × Y → [0, 1] (2.49)

The membership function of R for some pair (x, y), R(x, y) = 1, denotes that the two elements x
and y are fully related. On the other hand, R(x, y) = 0 means that these elements are unrelated,
while the values in between, 0 < R(x, y) < 1, underline a partial association. For instance,
if dfs, dnf, dns, and dgf are documents whose subjects concern mainly fuzzy systems, neural
fuzzy systems, neural systems, and genetic fuzzy systems, with keywords wf, wn, and wg,
respectively, then a relation R on D × W, D = {dfs, dnf, dns, dgf} and W = {wf, wn, wg}, can
assume a matrix form with the following entries:

R =

⎡
⎢⎢⎣

1 0 0.6
0.8 1 0
0 1 0

0.8 0 1

⎤
⎥⎥⎦

Since the universes are discrete, R can be represented as a 4 × 3 matrix (four documents and
three keywords), and entries, for example, R(dfs, wf) = 1, mean that the document content
dfs is fully compatible with the keyword wf whereas R(dfs, wn) = 0 and R(dfs, wg) = 0.6
indicate that dfs does not mention neural systems, but does have genetic systems as part of
its content, Figure 2.21(a). As with relations, when X and Y are finite with Card(X) = n and
Card(Y) = m, then R can be can be arranged into a certain n × m matrix R = [rij], with
rij ∈ [0,1] being the corresponding degrees of association between xi and yj.

Fuzzy relations defined on some continuous spaces such as R2, say “much smaller than”,
“approximately equal”, and “similar”, could, for instance, be characterized by the following



P1: OTA/XYZ P2: ABC
c02 JWST012-Pedrycz September 17, 2010 17:24 Printer Name: Yet to Come

50 Fuzzy Multicriteria Decision-Making: Models, Methods and Applications

(b) Membership function
of “x approximately equal to y”(a) Membership function of R

11

0.80.8

keywords
documents

0.60.6

0.40.4

0.20.2

00
4

4
3

3

3

2

2

2
1

11 1
2

3

xy

α=1

4

Figure 2.21 Membership functions of the relation R (a) and “x approximately equal to y” (b).

membership functions:

Rm(x, y) =
{

1 − exp(−|y − x |) if x ≤ y
0 otherwise

x much smaller than y

Re(x, y) = exp

(−|x − y|
α

)
α > 0 x and y approximately equal

Rs(x, y) =
{

exp(−(x − y)/β) if |x − y| ≤ 5
0 if |x − y| ≥ 5

β > 0 x and y similar

Figure 2.21(b) displays the membership function of the relation “x approximately equal to y”
on X = Y = [0,4] assuming that α = 1.

2.10.3 Properties of the Fuzzy Relations

Fuzzy relations come with a number of properties which capture the nature of the relationships
conveyed by relations.

2.10.4 Domain and Codomain of Fuzzy Relations

The domain, dom R, of a fuzzy relation R defined in X × Y is a fuzzy set whose membership
function is equal to

dom R(x) = sup
y∈Y

R(x, y) (2.50)

while its codomain, cod R, is a fuzzy set whose membership function is given as

cod R(y) = sup
x∈X

R(x, y) (2.51)

Considering finite universes of discourse, domain and codomain can be viewed as the height
of the rows and columns of the fuzzy relation matrix (Zadeh, 1971).
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2.10.5 Representation of Fuzzy Relations

Similar to the case of fuzzy sets, fuzzy relations can be represented by their α-cuts, that is,

R =
⋃

α∈[0,1]

αRα (2.52)

or, in terms of the membership function R(x, y) of R,

R(x, y) = sup
α∈[0,1]

(min α, R(x, y)) (2.53)

2.10.6 Equality of Fuzzy Relations

We say that two fuzzy relations P and Q defined in the same Cartesian product of spaces
X × Y are equal if and only if their membership functions are identical, that is,

P(x, y) = Q(x, y) ∀(x, y) ∈ X × Y (2.54)

2.10.7 Inclusion of Fuzzy Relations

A fuzzy relation P is included in Q, denoted by P ⊆ Q, if and only if

P(x, y) ≤ Q(x, y) ∀(x, y) ∈ X × Y (2.55)

Similar to the presented case of relations, given an n-fold Cartesian product of these universes
we define the fuzzy relation in the form

R : X1 × X2 × · · · × Xn → [0, 1] (2.56)

If the spaces X1, X2, . . ., Xn are finite with Card(X1) = n1 . . . Card(Xn) = nn, then R can be
expressed as an n-fold (n1 × · · · × n p) matrix R = [rij. . .k] with rij. . .k ∈ [0,1] being the degree
of association assigned to the n-tuple (xi, xj, . . . , xk) ∈ X1 × X2 × · · · ×Xn. If X1, X2, . . . , Xn

are infinite, then the membership function of R is a certain function of many variables. The
concepts of equality and inclusion of fuzzy relations could be easily extended for relations
defined in multidimensional spaces.

2.10.8 Operations on Fuzzy Relations

The basic operations on fuzzy relations, say union, intersection, and complement, conceptually
follow the corresponding operations on fuzzy sets once fuzzy relations are fuzzy sets formed
on multidimensional spaces. For illustrative purposes the definitions of union, intersection,
and complement below involve two-argument fuzzy relations. Without any loss of generality,
we can focus on binary fuzzy relations P, Q, R defined in X × Y. As in the case of fuzzy sets,
all definitions are defined pointwise.
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2.10.9 Union of Fuzzy Relations

The union R of two fuzzy relations P and Q defined in X × Y, R = P ∪ Q, is defined with the
use of the following membership function:

R(x, y) = P(x, y) S Q(x, y) ∀(x, y) ∈ X × Y (2.57)

(Recall that “S” stands for some t-conorm.)

2.10.10 Intersection of Fuzzy Relations

The intersection R of fuzzy relations P and Q defined in X × Y, R = P ∩ Q, is defined in the
following form:

R(x, y) = P(x, y) T Q(x, y) ∀(x, y) ∈ X × Y (2.58)

2.10.11 Complement of Fuzzy Relations

The complement R of the fuzzy relation R is defined by the membership function

R(x, y) = 1 − R(x, y) ∀(x, y) ∈ X × Y (2.59)

2.10.12 Transposition of Fuzzy Relations

Given a fuzzy relation R, its transpose or inverse relation, denoted by R−1, is a fuzzy relation
on Y × X such that the following relationship holds:

RT(y, x) = R(x, y) ∀(x, y) ∈ X × Y (2.60)

If R is a relation defined in some finite space, then R−1 is the transpose of the corresponding
n × m matrix representation of R. Therefore the form of R−1 is an m × n matrix whose
columns are now the rows of R.

The following properties are direct consequences of the definitions provided above:

(R−1)−1 = R (2.61)

(R)−1 = (R−1) (2.62)

2.10.13 Cartesian Product of Fuzzy Relations

Given fuzzy sets A1, A2, . . . , An defined in universes X1, X2, . . . , Xn , respectively, their
Cartesian product A1 × A2 × · · · × An is a fuzzy relation R on X1 × X2 × · · · × Xn with
the following membership function:

R(x1, x2, . . . , xn) = min(A1(x1), A2(x2), . . . , An(xn)) ∀x1 ∈ X1,∀x2 ∈ X2, . . . ,∀xn ∈ Xn

(2.63)



P1: OTA/XYZ P2: ABC
c02 JWST012-Pedrycz September 17, 2010 17:24 Printer Name: Yet to Come

Notions and Concepts of Fuzzy Sets: An Introduction 53

In general, we can generalize the concept of this Cartesian product by using some t-norms

R(x1, x2, . . . , xn) = A1(x1) T A2(x2) T . . . T An(xn) ∀x1 ∈ X1,∀x2 ∈ X2, . . . ,∀xn ∈ Xn

(2.64)

2.10.14 Projection of Fuzzy Relations

In contrast to the concept of the Cartesian product, the idea of projection is to construct fuzzy
relations on some subspaces of the original relation. Projection reduces the dimensionality of
the original space over which the original fuzzy relation as defined.

Given R as a fuzzy relation defined in X1 × X2 × · · · × Xn, its projection on X = Xi ×
Xj × · · ·× Xk, where I = {i, j, . . . , k} is a subsequence of the set of indexes Q = {1, 2, . . . , n},
is a fuzzy relation RX with the membership function (Zadeh, 1971)

RX (xi , x j , . . . , xk) = ProjX R(x1, x2, . . . , xn) = sup
xt ,xu ,...,xv

R(x1, x2, . . . , xn) (2.65)

where J = {t, u, . . . , v} is a subsequence of Q such that I ∪ J = Q and I ∩ J = �. In
other words, J is the complement of I with respect to N. Notice that the above expression is
computed for all values of (x1, x2, . . . , xn) ∈ Xi × Xj × · · · × Xk.

For instance, Figure 2.22 shows the projections RX and RY of a certain Gaussian binary
fuzzy relation R defined in X × Y with X = [0,8] and Y = [0,10], whose membership function
is equal to R(x, y) = exp{−α[(x − 4)2 + (y − 5)2]}. In this case the projections are formed as

RX(x) = ProjX R(x, y) = sup
y

R(x, y) (2.66)

RY(y) = ProjY R(x, y) = sup
x

R(x, y) (2.67)

Relation R and its projections on X and Y
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Figure 2.22 Fuzzy relation R along with its projections on X and Y.
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To find projections of the fuzzy relations defined in some finite spaces, the maximum operation
replaces the sup operation occurring in the definition provided above. For example, for the
fuzzy relation R: X × Y → [0,1] with X = {1, 2, 3} and Y = {1,2, 3, 4, 5},

R(x, y) =
⎡
⎣1.0 0.6 0.8 0.5 0.2

0.6 0.8 1.0 0.2 0.9
0.8 0.6 0.8 0.3 0.9

⎤
⎦

The three elements of the projection RX are taken as the maximum computed for each of the
three rows of R

RX = [max(1, 0, 0.6, 0.8, 0.5, 0.2) max(0.6, 0.8, 1.0, 0.2, 0.9) max(0.8, 0.6, 0.8, 0.3, 0.9)]

= [1.0 1.0 0.9]

Similarly, the five elements of RY are taken as the maximum among the entries of the five
columns of R. Figure 2.23 shows R and its projections Rx and RY:

RY = [1.0 0.8 1.0 0.5 0.9]

Note that the domain and codomain of the fuzzy relation are examples of its projections.

2.10.15 Cylindrical Extension

The cylindrical extension increases the number of coordinates of the Cartesian product over
which the fuzzy relation is formed. In this sense, the cylindrical extension is an operation that
is complementary to the already discussed projection operation (Zadeh, 1971).
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The cylindrical extension on X × Y of a fuzzy set of X is a fuzzy relation cyl A whose
membership function is equal to

cyl A(x, y) = A(x) ∀x ∈ X, ∀y ∈ Y (2.68)

If the fuzzy relation is viewed as a two-dimensional matrix, the operation of cylindrical
extension forms identical columns indexed by the successive values of y ∈ Y. The main intent
of cylindrical extensions is to achieve compatibility of spaces over which fuzzy sets and fuzzy
relations are formed. For instance, let A be a fuzzy set of X and R a fuzzy relation on X × Y.
Suppose we attempt to compute the union and intersection of A and R. Because the universes
over which A and R are defined are different, we cannot carry out any set-based operations on
A and R. The cylindrical extension of A, denoted by cyl A, provides the compatibility required.
Then the operations such as (cyl A) ∪ R and (cyl A) ∩ R make sense. The concept of cylindrical
extension can be easily generalized to multidimensional cases.

2.10.16 Reconstruction of Fuzzy Relations

Projections do not retain complete information conveyed by the original fuzzy relation. This
means that, in general, one cannot faithfully reconstruct a relation from its projections. In other
words, projections ProjX R and ProjY R of some fuzzy relation R do not necessarily lead to the
original fuzzy relation R. In general, the reconstruction of a relation via the Cartesian product
of its projections is a relation that includes the original relation, that is,

ProjX R × ProjY R ⊇ R (2.69)

If, however, the equality holds in the relationship above, then we call the relation R noninter-
active.

2.10.17 Binary Fuzzy Relations

A binary fuzzy relation R on X × X is defined as follows:

R : X × X → [0, 1] (2.70)

There are several important features of binary fuzzy relations:

(a) Reflexivity: R(x, x) = 1 ∀x ∈ X, Figure 2.24(a). When X is finite R ⊇ I, where I is the
identity matrix, I(x, y) = 1 if x = y and I(x, y) = 0 otherwise. Reflexivity can be relaxed
by admitting a concept of so-called ε-reflexivity, ε ∈ [0,1]. This means that R(x, x) ≥ ε.
When R(x, x) = 0 the fuzzy relation is irreflexive. A fuzzy relation is locally reflexive if,
for any x, y ∈ X, max(R(x, y), R(y, x)) ≤ R(x, x).

(b) Symmetry: R(x, y) = R(y, x) ∀(x, y)∈ X × X, Figure 2.24(b). For finite X, the matrix
representing R has entries distributed symmetrically along the main diagonal. Clearly, if
R is symmetric, then RT = R.



P1: OTA/XYZ P2: ABC
c02 JWST012-Pedrycz September 17, 2010 17:24 Printer Name: Yet to Come

56 Fuzzy Multicriteria Decision-Making: Models, Methods and Applications

x x

y

R(x,z) R(z,y)

x

R(x,y)

y

z

z”

z’

(a) (b) (c)

Figure 2.24 Main characteristics of binary fuzzy relations; see the details in the text.

(c) Transitivity: Here, supz∈X(R(x, z) T R(z, y)) ≤ R(x, y) ∀x, y, z ∈ X. In particular, if
this relationship holds for t = min, then the relation is called sup-min transitive. Looking
at the levels of associations R(x, z) and R(z, y) occurring between x, and z, and z and y, the
property of transitivity reflects the maximal strength among all possible links arranged in
series (such as (R(x, z) and R(z, y))) that does not exceed the strength of the direct link
R(x, z), Figure 2.24(c).

2.10.18 Transitive Closure

Given a binary fuzzy relation in a finite universe X, there exists a unique fuzzy relation
↔
R on

X, called the transitive closure of R, that contains R and is itself included in any transitive
fuzzy relation on X that contains R. Therefore, if R is defined on a finite universe of cardinality
n, the transitive closure is given by

trans(R) = ↔
R = R ∪ R2 ∪ · · · ∪ Rn (2.71)

where, by definition,

R2 = R ◦ R ◦ · · · ◦ R p = R ◦ R p−1 (2.72)

R ◦ R(x, y) = max
z

{R(x, z) T R(z, y)} (2.73)

Note that the composition R ◦ R can be computed similarly as encountered in matrix algebra
by replacing the ordinary multiplication by some t-norm and the sum by the max operations.
In other words, if r2

i j = [R2]i j = [R ◦ R]i j , then

r2
i j = max

k
(rik T rk j ) (2.74)
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If R is reflexive, then

I ⊆ R ⊆ R2 ⊆ · · · ⊆ Rn−1 = Rn (2.75)

The transitive closure of the fuzzy relation R can be found by computing the successive k
max T products of R until Rk = Rk−1, a procedure whose complexity is O(n3 log2 n) in time
and O(n2) in space (Naessens, Meyer, and De Baets, 2002; De Baets and Meyer, 2003). See
also Wallace, Acrithis, and Kollias (2006).

2.10.19 Equivalence and Similarity Relations

Equivalence relations are relations that are reflexive, symmetric, and transitive (Foulloy and
Benoit, 2006). Suppose that one of the arguments of R(x, y), “x” for example, has been fixed.
Thus, all elements related to x constitute a set called an equivalence class of R with respect to
“x” and denoted by

Ax = {y ∈ Y|R(x, y) = 1} (2.76)

The family of all equivalence classes of R, denoted X/R, is a partition of X. In other words,
X/R is a family of pairwise disjoint nonempty subsets of X whose union is X. Equiv-
alence relations can be viewed as a generalization of the equality relations in the sense
that members of an equivalence class can be considered equivalent to each other under the
relation R.

Similarity relations are fuzzy relations that are reflexive, symmetric, and transitive. Like
any fuzzy relation, a similarity relation can be represented by a nested family of its α-cuts,
Rα . Each α-cut constitutes an equivalence relation and forms a partition of X. Therefore, each
similarity relation is associated with a set P(R) of partitions of X,

P(R) = {X/Rα|α ∈ [0, 1]} (2.77)

Partitions are nested in the sense that, if α > β, then the partition X/Rα is finer than the
partition X/Rβ . For example, consider the relation defined on X = {a, b, c, d, e} in the
following way:

R =

⎡
⎢⎢⎢⎢⎣

1.0 0.8 0 0 0
0.8 1.0 0 0 0
0 0 1.0 0.9 0.5
0 0 0.9 1.0 0.5
0 0 0.5 0.5 1.0

⎤
⎥⎥⎥⎥⎦

One can easily verify that R is a symmetric matrix, has values of one at its main diagonal,
and is max–min transitive. Therefore R is a similarity relation. The levels of refinement of
the similarity relation R can be represented in the form of a partition tree in which each node
corresponds to a fuzzy relation on X whose degree of association between the elements is
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Figure 2.25 Partition tree induced by binary fuzzy relation R.

greater than or equal to the threshold value α. For instance, we have the following fuzzy
relations for α = 0.5, 0.8, and 0.9, respectively:

R0.5 =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

⎤
⎥⎥⎥⎥⎦ , R0.8 =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ , R0.9 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

Note that R = ∪α∈	αRα where ∪ = max and 	 = {0.5, 0.8, 0.9, 1.0} is the level set of R.
Also note that the greater the value of α, the finer the classes, as shown in Figure 2.25.

2.10.20 Compatibility and Proximity Relations

Compatibility relations are reflexive and symmetric relations. Associated with any compat-
ibility relation are sets called compatibility classes. A compatibility class is a subset A of a
universe X such that R(x, y) = 1 for all x, y ∈ A.

Proximity relations are reflexive and symmetric fuzzy relations. Let A be a subset of a
universe X. Thus, A is an ε-proximity class of R if R(x, y) ≥ ε for all x, y ∈ A. For instance,
the relation R on X = {1, 2, 3, 4, 5}

R =

⎡
⎢⎢⎢⎢⎣

1.0 0.7 0 0 0.6
0.7 1.0 0.6 0 0
0 0.6 1.0 0.7 0.4
0 0 0.7 1.0 0.5

0.6 0 0.4 0.5 1.0

⎤
⎥⎥⎥⎥⎦

has unity on its main diagonal and is symmetric. Therefore, R is a proximity relation. Com-
patibility classes and α-compatibility classes do not necessarily induce partitions of X (Klir
and Yuan, 1995).



P1: OTA/XYZ P2: ABC
c02 JWST012-Pedrycz September 17, 2010 17:24 Printer Name: Yet to Come

Notions and Concepts of Fuzzy Sets: An Introduction 59

Proximity is an important concept in pattern recognition, being used in contexts such as
visual images because, under these circumstances, human subjectivity leads to some useful
information that could be represented in the form of proximity relations.

2.11 Conclusions

Fuzzy sets provide a conceptual and operational framework to deal with granular information.
Particular cases of degenerate membership functions (singletons) represent numeric informa-
tion. Fuzzy sets come with a well-defined semantics whose formal description is conveyed
in the form of membership functions. The variety of available membership functions offers
a great deal of flexibility in capturing the meaning of the information granule. We presented
the relationships between fuzzy sets and sets by stressing that sets are subsumed as particular
cases of sets. The reconstruction of fuzzy sets through a finite or infinite family of α-cuts
emphasizes the computational linkages between fuzzy sets and sets and indicates that the
set-theoretic methods can be effectively utilized when processing fuzzy sets. Fuzzy relations
and their important classes present an interesting view on the characterization of dependencies
captured by membership grades.

Exercises

Problem 2.1. There is an interesting problem posed by Borel (1950) that could now be
conveniently handled in the setting of fuzzy sets:

One seed does not constitute a pile nor two or three. From the other side, everybody will agree
that 100 million seeds constitute a pile. What therefore is the appropriate limit?

Given this description, suggest a membership function for the concept discussed here. What
type of membership function would you consider in this problem? Why?

Problem 2.2. Consider two situations: (a) the number of people expected to ride on a bus on a
certain day; (b) the number of people that could ride on a bus at any one time. Both situations
describe an uncertain scenario. Which of these two situations involves randomness? Which
one involves fuzziness? What is the nature of fuzziness: similarity, possibility, or preference?

Problem 2.3. We are interested in describing the state of an environment by quantifying
temperature as very cold, cold, comfortable, warm, and hot. Choose an appropriate universe
of discourse. Represent state values using (a) sets and (b) fuzzy sets.

Problem 2.4. Suppose that allowed speeds on city streets range between 0 and 60 km/h.
Describe the speed values such as low, medium, and high using sets and fuzzy sets. Would
this description be adequate also for highways? Justify the answer.

Problem 2.5. Given the fuzzy set A with the membership function

A(x) =
⎧⎨
⎩

x − 4 if 4 ≤ x ≤ 5
−x + 6 if 5 < x ≤ 6
0 otherwise
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(a) Plot the membership function and identify its type.
(b) What type of linguistic label (semantics) could be associated with the concept conveyed

by A?

Problem 2.6. Consider the fuzzy set A with the following membership function:

A(x) =
⎧⎨
⎩

x − 4/2 if 4 ≤ x ≤ 5
−x + 6/2 if 5 < x ≤ 6
0 otherwise

(a) Plot this membership function.
(b) Is A normal? Does A have a core? What is the height of this fuzzy set?
(c) Find the support of A. Is A a convex fuzzy set?

Problem 2.7. Assume a fuzzy set A whose membership function is defined in the following
form:

A(x) =

⎧⎪⎪⎨
⎪⎪⎩

x − 4 if 4 ≤ x ≤ 5
1 if 5 < x ≤ 6
−x + 7 if 6 < x ≤ 7
0 otherwise

(a) Sketch the graph of the membership function.
(b) Find an analytic expression for its α-cuts.
(c) Is A a convex fuzzy set?

Problem 2.8. Demonstrate that if a fuzzy set is convex, then all its α-cuts are convex.

Problem 2.9. Consider the following fuzzy sets defined in the finite universe of discourse
X = {1, 2, 3, . . . , 10}:

A = (0, 0, 0, 0, 0.4, 0.6, 0.8, 1, 0.8, 0.6)

B = (0, 0, 0, 0, 0.4, 0.5, 0.6, 1, 0.6, 0.4)

C = (0, 1, 0.2, 0.3, 0.4, 0.5, 0.6, 1, 0.5, 0)

(a) Is A ⊆ B? Is B ⊆ A?
(b) Is C ⊆ A? Is C ⊆ B?
(c) Quantify the findings obtained in (a) and (b).

Problem 2.10. Suppose that fuzzy sets A and B defined in X = {x1, x2, x3} are represented
as vectors whose components are the membership degrees of x1, x2, and x3 in A and B. Plot A
and B in the unit cube for each of the following cases:

(a) A = (1, 0, 0) and B = (0, 1, 1),
(b) A = (0, 1, 0) and B = (1, 0, 1),
(c) A = (0, 0, 1) and B = (1, 1, 0),
(d) A = (0.5, 0.5, 0.5) and B = (0.5, 0.5, 0.5).
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Problem 2.11. Let Rα = {(x, y) ∈ X × Y | R(x, y) ≥ α} be the α-cut of the fuzzy relation
R. Show that any fuzzy relation R : X × Y → [0,1] can be represented in the following
canonical form:

R =
⋃

α∈(0,1]

αRα

where ∪ denotes the standard union operation and αRα is a subnormal fuzzy set whose
membership function is α if (x, y) ∈ Rα and zero otherwise.

Problem 2.12. How can the algorithm to compute the transitive closure of a fuzzy relation be
used to verify if a fuzzy relation is transitive or not?

Problem 2.13. Show that if R is a similarity relation, then each of its α-cuts Rα is an
equivalence relation.

Problem 2.14. Verify that the transitive closure of a fuzzy proximity relation is a similarity
relation.

Problem 2.15. A tolerance relation R in X × Y is a reflexive and symmetric ordinary relation.
Show that if R is a proximity relation, then, for any 0 < α ≤ 1, Rα is a tolerance relation.
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3
Selected Design and Processing
Aspects of Fuzzy Sets

In this chapter, we continue the discussion on the fundamentals of fuzzy sets by concentrating
on three main issues: (1) the design of fuzzy sets (membership functions); (2) logic operations
and aggregation of fuzzy sets; and (3) transformations (mappings) of fuzzy sets including the
fundamentals of fuzzy arithmetic. These are the essentials which make the framework of fuzzy
sets fully operational when supporting a wide range of applications.

3.1 The Development of Fuzzy Sets: Elicitation of Membership
Functions

The issue of elicitation and interpretation of fuzzy sets (their membership functions) is signif-
icant from the conceptual, algorithmic, and application-oriented standpoints (Klir and Yuan,
1995; Nguyen and Walker, 1999). In the literature, we can find a large number of methods that
support the construction of membership functions. In general, we distinguish here between
user-driven and data-driven approaches, with a number of techniques that share some features
specific to both data- and user-driven methods and hence located somewhere in between. The
determination of membership functions has been a debatable issue for a long time, almost
since the very inception of fuzzy sets. In contrast to interval analysis and set theory where
the estimation of bounds of the interval constructs has not attracted a great deal of attention
and seemed to be somewhat taken for granted, an estimation of membership degrees (and
membership functions, in general) became essential and over time has led us to sound, well-
justified, and algorithmically appealing estimation techniques (Civanlar and Trussell, 1986;
Dombi, 1990; Turksen, 1991; Chen and Wang, 1999; Medaglia et al., 2002).

3.1.1 Semantics of Fuzzy Sets: Some General Observations

Fuzzy sets are constructs that come with a well-defined meaning. They capture the semantics
of the framework they intend to operate within. Fuzzy sets are the conceptual building blocks
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(generic constructs) that are used in problem description, modeling, decision-making, control,
and pattern classification tasks. Before discussing specific techniques of membership function
estimation, it is worth casting the overall presentation in a certain framework by emphasizing
the aspect of the use of a finite number of fuzzy sets leading to some essential vocabulary
reflective of the underlying domain knowledge. In particular, we are concerned with the related
semantics and calibration capabilities of membership functions and the locality properties of
fuzzy sets.

The limited capacity of a short-term memory, as identified by Miller (1956), suggests that
we could easily and comfortably handle and process five to nine items. This implies that the
number of fuzzy sets to be considered as meaningful conceptual entities should be kept more
or less at the same level. The observation sounds reasonable – quite commonly in practice we
witness situations in which this assumption holds. For instance, when describing linguistically
quantified variables, say error or change of error, or quantifying temperature (warm, hot, cold,
etc.), we can use seven generic concepts (descriptors) labeling them as positive large, positive
medium, positive small, around zero, negative small, negative medium, negative large. When
characterizing speed on a highway, we can talk about its quite intuitively appealing descriptors
such as low, medium, and high speed. In the description of an approximation error, we can
typically use the concept of a small error around a point of linearization (in all these examples,
the terms are set in italics to emphasize the granular character of the constructs and the role
being played there by fuzzy sets). While embracing very different tasks, these descriptors
exhibit a striking similarity. All of them are information granules, not numbers. We can stress
that the descriptive power of numbers is very much limited and numbers themselves are
not used to describe abstract concepts. In general, the use of an excessive number of terms
does not offer any advantage. On the contrary, it clutters our description of the phenomenon
and hampers further effective usage of such concepts that we intend to establish to capture
the essence of the domain knowledge. With the increase in the number of fuzzy sets, their
semantics and interpretation capabilities also become negatively impacted. Fuzzy sets may be
built into a hierarchy of terms (descriptors) but at each level of the hierarchy (when moving
down toward higher specificity that is an increasing level of detail), the number of fuzzy sets
is kept relatively small.

Although fuzzy sets capture the semantics of the concepts, they may require some cali-
bration depending upon the specification of the problem at hand. This flexibility of fuzzy
sets should not be treated as a shortcoming but rather viewed as a certain and fully exploited
advantage. For instance, the term low temperature comes with a clear meaning, yet it requires
a certain calibration depending upon the environment and the context it was placed into.
The concept of low temperature is used in different climate zones and is of relevance in any
communication between people, yet for each member of the community the meaning of the
term is different, thereby requiring some calibration. This could be realized, for example, by
shifting the membership function along the universe of discourse of temperature, affecting the
universe of discourse by some translation, dilation, and so on. As a communication vehicle,
linguistic terms are fully legitimate and as such they appear in different settings. They require
some refinement so that their meaning is fully understood and shared by the community of
the users.

When discussing the methods aimed at the determination of membership functions or
membership grades, it is worthwhile underlining the existence of the two main categories of
approaches that are reflective of the origin of the numeric values of membership. The first one
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is reflective of the domain knowledge and opinions of experts. In the second one, we consider
experimental data whose global characteristics become reflected in the form and parameters
of the membership functions. In the first group, we can refer to the pairwise comparison (for
instance, Saaty’s approach, as discussed later in this chapter) as one of the quite visible and
representative examples, while fuzzy clustering is usually presented as a typical example of
the data-driven methods of membership function estimation. In what follows, we elaborate on
several representative methods, which will help us to appreciate the relevance and flexibility
of fuzzy sets.

3.1.2 Fuzzy Set as a Descriptor of Feasible Solutions

The aim of the method is to relate the membership function to the level of feasibility of
individual elements of a family of solutions associated with the problem at hand. Let us
consider a certain function F(x) defined in L, that is, F : L → R+, where L ⊂ R. Our intent is
to determine its maximum, namely x0 = arg maxx∈L F(x). On the basis of the values of F(x),
we can form a fuzzy set A describing a collection of feasible solutions that could be labeled as
optimal. More specifically, we use the fuzzy set to represent an extent (degree) to which some
specific values of “x” could be sought as potential (optimal) solutions to the problem. Taking
this into consideration, we relate the membership function of A to the corresponding value of
F(x) cast in the context of the boundary values assumed by “F”. For instance, the membership
function of A could be expressed in the following form:

A(x) =
F(x) − min

x∈L
F(x)

max
x∈L

F(x) − min
x∈L

F(x)
(3.1)

The boundary conditions are intuitively associated with values of minx∈L F(x) and
maxx∈L F(x). For other values of “x” where F attains is maximal value, A(x) is equal to
one and, around this point, the membership values become lower when “x” is likely to be a
solution to the problem F(x) < maxx∈L F(x). The form of the membership function depends
upon the character of the function under consideration.

If the fuzzy set is used to quantify the quality (performance) of the solution to the mini-
mization problem, then the resulting membership function reads as follows:

A(x) = 1 −
F(x) − min

x∈L
F(x)

max
x∈L

F(x) − min
x∈L

F(x)
(3.2)

If the function of interest assumes values in R, then the two formulas are modified by including
the absolute values of the differences, that is,

A(x) =

∣
∣
∣
∣
F(x) − min

x∈L
F(x)

∣
∣
∣
∣

∣
∣
∣
∣
max
x∈L

F(x) − min
x∈L

F(x)

∣
∣
∣
∣

and A(x) = 1 −

∣
∣
∣
∣
F(x) − min

x∈L
F(x)

∣
∣
∣
∣

∣
∣
∣
∣
max
x∈L

F(x) − min
x∈L

F(x)

∣
∣
∣
∣
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Linearization, its quality, and the description of such quality fall under the same banner as
the optimization problem. We show how the membership function could be formed in this
case. When linearizing a function around some predetermined point, a quality of the resulting
linearization scheme can be quantified in the form of some fuzzy set. Its membership function
attains one for all these points where the linearization error is equal to zero (in particular,
this holds at the point around which the linearization is carried out). The following example
illustrates this idea.

Example 3.1. We are interested in the linearization of the function y = g(x) = x2 around
x0 = 1 and assessing the quality of this linearization in the range [0,4]. The linearization formula
reads y − y0 = g′(x0)(x − x0) where y0 = g(x0) and g′(x0) is the derivative of g(x) at x0. Given
the form of the function under consideration, its linearized version comes in the form (2x0)
(x − x0) = 2(x − 1). We define the quality of this linearization by taking the absolute value of the
difference between the original function and its linearized version, f (x) = |g(x) − 2(x − 1)| =
|x2 − 2(x − 1)|. As the fuzzy set A describes the quality of linearization, its membership
function has to take into consideration the expression

A(x) = 1 −

∣
∣
∣
∣
F(x) − min

x∈L
F(x)

∣
∣
∣
∣

∣
∣
∣
∣
max
x∈L

F(x) − min
x∈L

F(x)

∣
∣
∣
∣

(3.3)

where maxx∈L F(x) = F(4) = 10 and minx∈L F(x) = 0.0. When, at some z, F(z) =
minx∈L F(z), this means that A(z) = 1, which in the sequel indicates that the linearization
at this point is perfect; no linearization error has been generated. We note that the higher
quality of approximation is achieved for the arguments positioned closer to x0; however, the
form of the membership function depends on the form of the function to be linearized and the
position of the point around which this linearization takes place.

3.1.3 Fuzzy Set as a Descriptor of the Notion of Typicality

Fuzzy sets address an issue of gradual typicality of elements to a given concept whose essence
is being captured by the fuzzy set. They stress the fact that there are elements that fully satisfy
the concept (are typical of it) and there are various elements that are allowed only with partial
membership degrees. The form of the membership function is reflective of the semantics of
the concept. Its details could be conveniently captured by adjusting the parameters of the
membership function or choosing its form depending upon the available experimental data.
For instance, consider a fuzzy set of circles. Formally, an ellipsoid includes a circular shape
as its very special example, which satisfies the condition of equal axes, that is, a = b, see
Figure 3.1. What if we have a = b + ε where ε is a very small positive number? Could
this figure be perceived as a circle? Very likely so, but perhaps not a circle in the straight
mathematical sense, which we may note by assigning a membership grade that is very close
to one, say 0.97. Our perception, which comes with some level of tolerance to imprecision,
does not allow us to tell apart this figure from the ideal circle.
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a

b

|a-b|

membership 

1

Figure 3.1 Perception of geometry of ellipsoids and quantification of their membership grades to the
concept of “fuzzy circles”.

It is intuitively appealing to see that higher differences between the values of the axes “a”
and “b” result in lower values of the membership function. The definition of the fuzzy set of a
circle could be formed in a number of ways. Prior to the definition or even before a visualization
of the shape of the membership function, it is important to formulate a universe of discourse
over which it is to be defined. There are several sound alternatives worth considering:

(a) For each pair of values of the axes (a and b), collect an experimental assessment of
membership of the ellipsoids to the category of circles. Here the membership function is
defined over a Cartesian space of the spaces of lengths of axes of the ellipsoids. While
selecting a form of the membership we require that it assumes values at a = b and becomes
gradually reduced when the arguments start getting more distant.

(b) We can define an absolute distance between “a” and “b”, |a − b|, and form a fuzzy set over
this space X; that is, X = {x | x = |a − b|}, X ⊂ R+. These semantic constraints translate
into the condition of A(0) = 1. For higher values of x we may consider monotonically
decreasing values of the membership function A.

(c) We can envision ratios of a and b, x = a/b, and construct a fuzzy set over the space
of R+ such that X = {x | x = a/b}. Here we require that A(1) = 1. We also anticipate
lower values of membership grades when moving to the left and to the right from x =
1. Note that the membership function could be asymmetric, so we allow for different
membership values for the same length of the sides, say a = 6, b = 5 and a = 6 and
b = 5 (the effect could be quite apparent due to the occurrence of visual effects when per-
ceiving geometric phenomena). The previous model of X as outlined in (a) cannot capture
this effect.

Once the form of the membership function has been defined, it could be further adjusted by
modifying the values of its parameters on the basis of some experimental findings. They come
in the form of ordered triples or pairs, say (a, b, µ), (a/b, µ), or (|a – b|, µ) depending on
the previously accepted definition of the universe of discourse. The membership values µ are
those available from the expert offering an assessment of the likeness of the corresponding
geometric figure. Note that the resulting membership functions are formulated in different
universes of discourse.
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3.1.4 Vertical and Horizontal Schemes of Membership Function Estimation

The vertical and horizontal modes of membership estimation are two standard approaches
used in the determination of fuzzy sets. They reflect distinct ways of looking at fuzzy sets
whose membership functions at some finite number of points are quantified by experts. In the
horizontal approach we identify a collection of elements in the universe of discourse X and
request that an expert answers the following question:

Does x belong to concept A? (3.4)

The answers are expected to come in a binary (yes–no) format. The concept A defined in
X could be any linguistic notion, say high speed, low temperature, and so on. Given “n”
experts whose answers for a given point of X form a mix of yes–no replies, we count the
number of “yes” answers and compute the ratio of the positive answers (p) versus the total
number of replies(n), that is, p/n. This ratio (likelihood) is treated as a membership degree of
the concept at the given point of the universe of discourse. When all experts accept that the
element belongs to the concept, then its membership degree is equal to one. Higher disagree-
ment between the experts (quite divided opinions) results in lower membership degrees. The
concept A defined in X requires the collection of results for some other elements of X and
determining the corresponding ratios as outlined in Figure 3.2 (observe a series of estimates
that are determined for selected elements of X; note also that the elements of X need not be
evenly distributed).

If replies follow some binomial distribution, for example, then we can determine a confi-
dence interval of the individual membership grade. The standard deviation of the estimate of
the ratio of the positive answers associated with the point x, denoted here by σ , is given in
the form

σ =
√

p/n(1 − p/n)

n
(3.5)

The associated confidence interval, which describes a range of membership values, is then
determined as

[p − σ, p + σ ] (3.6)

In essence, when the confidence intervals are taken into consideration, the membership
estimates become intervals of possible membership values and this leads to the concept of

p/n

X

Figure 3.2 A horizontal method of the estimation of the membership function.
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so-called interval-valued fuzzy sets. By assessing the width of the estimates, we can control the
execution of the experiment: when the ranges are too long, one could redesign the experiment
and monitor closely the consistency of the responses collected during its realization.

Example 3.2. Let us consider the responses of 10 experts who came up with the following
assessment of the concept high interest rate (%) with the number of “yes” responses collected:

x (%) 2 3 5 8 10

No. of “yes” replies 0 2 4 7 10

Following these responses, the membership function and its confidence values σ producing
confidence intervals are given as

x (%) 2 3 5 8 10

A(x) (high interest rate) 0.0 0.2 0.4 0.7 1.0
σ 0.0 0.126 0.155 0.144 0.0

The advantage of the method lies in its simplicity as the technique relies explicitly upon the
direct counting of responses. The concept is also intuitively appealing. The probabilistic nature
of the replies helps us to construct confidence intervals that are essential to the assessment
of the specificity of the membership quantification. A certain drawback is related to the
local character of the construct: as the estimates of the membership function are completed
separately for each element of the universe of discourse, they could exhibit a lack of continuity
when moving from a certain point to its neighbor. This concern is particularly valid in the case
when X is a subset of real numbers.

The vertical mode of membership estimation is concerned with the estimation of the mem-
bership function by focusing on the determination of the successive α-cuts. The experiment
focuses on the unit interval of membership grades. The experts involved in the experiment are
asked questions of the following form:

What are the elements of X which belong to fuzzy set A at degree no lower than α? (3.7)

where α is a certain level (threshold) of membership grades in [0,1]. The essence of the method
is illustrated in Figure 3.3. Note that satisfaction of the inclusion constraint is obvious: we
envision that for higher values of α, the expert is going to provide more limited (smaller)
subsets of X; the vertical approach leads to the fuzzy set by combining the estimates of the
corresponding α-cuts. Given the nature of this method, we refer to the collection of random
sets as these estimates appear in the successive stages of the estimation process.

These elements are identified by the expert as those forming the corresponding α-cuts of A.
By repeating the process for several selected values of α we end up with the α-cuts and, using
them, we reconstruct the fuzzy set. The simplicity of the method is its genuine advantage.
As in the horizontal method of membership estimation, a possible lack of continuity is a
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α1

αp

X

Figure 3.3 A vertical approach of membership estimation through the reconstruction of a fuzzy set
through its estimated α-cuts.

certain disadvantage one has to be aware of. Here the selection of suitable levels of α needs
to be carefully investigated. Similarly, an order at which different levels of α are used in
the experiment could impact the estimate of the membership function. The discussion on the
optimization of a series of α-cuts (which might be of relevance in the context of the estimation
of membership functions) is given in Pedrycz, Dong, and Hirota (2009).

3.1.5 Saaty’s Priority Approach of Pairwise Membership
Function Estimation

The priority approach introduced by Saaty (Saaty, 1980; Saaty, 1986b) forms another in-
teresting alternative used to estimate the membership function, which helps to alleviate the
limitations associated with the horizontal and vertical schemes of membership function es-
timation. To explain the essence of the method, let us consider a collection of elements
X1, X2, . . . , Xn (those could be, for instance, some alternatives whose allocation to a certain
fuzzy set is sought) for which membership grades A(X1), A(X2), . . . , A(Xn) are given. Let us
organize them into a so-called reciprocal matrix (or multiplicative preference relation) of the
following form:

M = [M(Xk, Xi )] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A(X1)

A(X1)

A(X1)

A(X2)
. . .

A(X1)

A(Xn)
A(X2)

A(X1)

A(X2)

A(X2)
. . .

A(X2)

A(Xn)
...

...
. . .

...

A(Xn)

A(X1)

A(Xn)

A(X2)
. . .

A(Xn)

A(Xn)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
A(X1)

A(X2)
. . .

A(X1)

A(Xn)
A(X2)

A(X1)
1 . . .

A(X2)

A(Xn)
...

...
. . .

...

A(Xn)

A(X1)

A(Xn)

A(X2)
. . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.8)

Noticeably, the diagonal values of M are equal to one. The entries that are symmetrically
positioned with respect to the diagonal satisfy the condition of reciprocality, that is, M(Xi, Xj) =
1/M(Xj, Xi). We will be referring to this form of reciprocality as multiplicative reciprocality as
opposed to so-called additive reciprocality for which M(Xi, Xj) + M(Xj, Xi) = 1. Furthermore,
an important transitivity property (the multiplicative transitivity) holds, namely M(Xi, Xk)



P1: OTA/XYZ P2: ABC
c03 JWST012-Pedrycz September 21, 2010 10:57 Printer Name: Yet to Come

Selected Design and Processing Aspects of Fuzzy Sets 71

M(Xk, Xj) = M(Xi, Xj), for all indexes i, j, and k. This property holds because of the way in
which the matrix has been constructed. By plugging in the corresponding ratios, one obtains

M(Xi , Xk) M(Xk, X j ) = A(Xi )

A(Xk)

A(Xk)

A(X j )
= A(Xi )

A(X j )
= M(Xi , X j )

Let us now multiply the matrix by the vector of the membership grades A = [A(X1) A(X2) . . .

A(Xn)]T. For the ith row of M (that is, the ith entry of the resulting vector of results) we obtain

[M A]i =
[

A(Xi )

A(X1)

A(Xi )

A(X2)
· · · A(Xi )

A(Xn)

]

⎡

⎢
⎢
⎢
⎣

A(X1)
A(X2)

...
A(Xn)

⎤

⎥
⎥
⎥
⎦

, i = 1, 2, . . . , n (3.9)

Thus the ith element of the vector is equal to nA(Xi). Overall, completing the calculations
once for all “i” leads to the expression MA = nA. In other words, we conclude that A is the
eigenvector of M associated with the largest eigenvalue of M, which is equal to “n”. In the
above scenario, we have assumed that the membership values A(xi) are given and then showed
what form of results could they lead to. In practice the membership grades are not given and
have to be estimated.

The starting point of the estimation process is the entries of the reciprocal matrix which
are obtained through collecting results of pairwise evaluations offered by an expert, designer,
or user (depending on the character of the task at hand). Prior to making any assessment, the
expert is provided with a finite scale with values spread between one and nine. Some other
alternatives of the scales, such as those involving five or nine levels, could be sought as well.
If Xi is strongly preferred over Xj when considered in the context of the fuzzy set whose
membership function we would like to estimate, then this judgment is expressed by assigning
high values of the available scale, say six or seven. If we still sense that Xi is preferred over
Xj, yet the strength of this preference is lower in comparison to the previous case, then this
is quantified using some intermediate values of the scale, say three or four. If no difference
is sensed, the values close to one are the preferred choice, say two or one. The value of
one indicates that Xi and Xj are equally preferred. The general quantification of preferences
positioned on the scale of 1–9 can be described as in Table 3.1 (Saaty, 1986a) .

Table 3.1 Scale of intensities of relative importance

Intensity of
relative importance Description

1 Equal importance (equal significance)
3 Moderate importance of one element over another (weak superiority)
5 Essential or strong importance (strong superiority)
7 Demonstrated importance (evident superiority)
9 Extreme importance (absolute superiority)
2, 4, 6, 8 Intermediate values between the two adjacent judgments
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On the other hand, if Xj is preferred over Xi, the corresponding entry assumes values below
one. Given the reciprocal nature of the assessment, once the preference of Xi over Xj has
been quantified, the inverse of this number is plugged into the entry of the matrix that is
located at the (j, i)th coordinate. As indicated earlier, the elements on the main diagonal
are equal to one. Next, the maximal eigenvalue is computed along with its corresponding
eigenvector. The normalized version of the eigenvector is then the membership function of
the fuzzy set we considered when realizing all pairwise assessments of the elements of its
universe of discourse. The effort to complete pairwise evaluations is far more manageable in
comparison to any experimental overhead we encounter when assigning membership grades to
all elements (alternatives) of the universe in a single step. Practically, the pairwise comparison
helps the expert focus on only two elements once at a time, thus reducing uncertainty and
hesitation while leading to a higher level of consistency. The assessments are not free of bias
and could exhibit some inconsistent evaluations. In particular, we cannot expect the transitivity
requirement to be fully satisfied. Fortunately, the lack of consistency could be quantified and
monitored. The largest eigenvalue computed for M is always greater than the dimensionality of
the reciprocal matrix (recall that in reciprocal matrices the elements positioned symmetrically
along the main diagonal are the inverse of each other), that is, λmax > n where the equality
λmax = n occurs only if the results are fully consistent. The ratio

ν = (λmax − n)/(n − 1) (3.10)

can be regarded as an index of inconsistency of the data: the higher its value, the less consistent
the collected experimental results. This expression can be sought as an indicator of the quality of
the pairwise assessments provided by the expert. If the value of v is too high, exceeding a certain
superimposed threshold, the experiment may need to be repeated. Typically, if ν is less than 0.1
the assessment is sought to be consistent, while higher value of v call for the re-examination of
the experimental data and a rerun of the experiment. To quantify how much the experimental
data deviate from the transitivity requirement, we calculate the absolute differences between
the corresponding experimentally obtained entries of the reciprocal matrix, namely M(Xi, Xk)
and M(Xi, Xj) M(Xj, Xk). The sum expressed in the form

V (i, k) =
n

∑

j=1

|M(Xi , X j )M(X j , Xk) − M(Xi , Xk)| (3.11)

serves as a useful indicator of the lack of transitivity of the experimental data for the given
pair of elements (i, k). If required, we may repeat the experiment when the above sum takes
high values. The overall sum

∑n
i,k V (i, k) then becomes a global evaluation of the lack of

transitivity of the experimental assessment.

Example 3.3. Let us estimate the membership function of the concept hot temperature for
the space of temperatures consisting of 10, 20, 30, 45 degrees Celsius. The scale in which the
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pairs of these elements are evaluated consists of five levels (say, 1, 2, . . . , 5). The experimental
results of the pairwise comparison are collected in the reciprocal matrix M,

M =

⎡

⎢
⎢
⎣

1 1/2 1/4 1/5
2 1 1/3 1/4
4 3 1 1/3
5 4 3 1

⎤

⎥
⎥
⎦

(3.12)

Calculating the maximal eigenvalue, we obtain λmax = 4.114 which is slightly higher than
the dimension (n = 4) of the reciprocal matrix. The corresponding eigenvector is equal to
[0.122 0.195 0.438 0.869] which after normalization gives rise to the membership function of
hot temperature equal to [0.14 0.22 0.50 1.00]. The value of the inconsistency index n is equal
to (4.114 − 4)/3 = 0.038 and is far lower than the threshold of 0.1.

Example 3.4. Let us consider some modified version of the previously discussed reciprocal
matrix with the following entries:

M =

⎡

⎢
⎢
⎣

1 1/2 1/4 1/5
2 1 1/3 4
4 3 1 1/3
5 1/4 3 1

⎤

⎥
⎥
⎦

(3.13)

Now the maximal eigenvalue is far higher than the dimensionality of the problem,
λmax = 5.426. In this case, given the high value of the inconsistency index, ν = (5.426 − 4)/3
= 0.475, there is no point in computing the corresponding eigenvector. To fix the problem
we could compute the lack of transitivity for the triples of indexes (i, j, k) and in this way
highlight those assessments that tend to be highly inconsistent. These are the candidates whose
evaluation has to be revised.

The method of pairwise comparison has been generalized in many different ways by allowing
estimates to be expressed as fuzzy sets (van Laarhoven and Pedrycz, 1983). One can refer
to a number of applications in which the technique of pairwise comparison has been directly
applied (Kulak and Kahraman, 2005).

3.1.6 Fuzzy Sets as Granular Representatives of Numeric Data – A
Principle of Justifiable Granularity

In general, a fuzzy set is reflective of the nature of numeric data that are put together and
interpreted in some context. Using its membership function we attempt to embrace them in a
concise manner. The development of the fuzzy set is supported by the following experiment-
driven and intuitively appealing rationale:

(a) first, we expect that A reflects (or matches) the available experimental data to the highest
extent;

(b) second, the fuzzy set is kept specific enough so that it comes with a well-defined semantics.
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X

max Σ A(x )k

min Supp(A)

data 

a

Figure 3.4 Optimization of the slope of the linearly increasing section of the membership function
of A.

These two requirements point at the multiobjective nature of the construct: we want to max-
imize the coverage of experimental data (as articulated by (a)) and minimize the spread of
the fuzzy set (as captured by (b)). These two requirements give rise to a certain optimization
problem. Furthermore, quite legitimately, we assume that the fuzzy set to be constructed has
a unimodal membership function or its maximal membership grades occupy a contiguous
region in the universe of discourse in which this fuzzy set has been defined. This helps us to
build a membership function separately for its rising and declining sections. The core of the
fuzzy set is determined first. Next, assuming the simplest scenario when using the linear type
of membership functions, the essence of the optimization problem boils down to a rotation
of the linear segment of the membership function around the upper point of the core of A;
see Figure 3.4. The point of rotation of the linear segment of this membership function is
marked by an empty circle. By rotating this segment around this point, we intend to maximize
(a) and minimize (b). Note that these two criteria are conflicting; that is, the increase of the
experimental evidence comes with reduced specificity of the fuzzy set. The optimization of
the decreasing section of the membership function is realized in the same way.

Before moving on to the determination of the membership function, we concentrate on the
location of its numeric representative. Typically, one could view an average of the experimental
data x1, x2, . . . , xn to be a sound representative. While its usage is quite common in practice,
a better representative of the numeric data is a median value. There is a sound reason for this
choice. The median is a robust statistic, meaning that it allows for a high level of tolerance
to potential noise existing in the data. Its important ability is to ignore outliers. Given that
the fuzzy set is sought to be a granular and “stable” representation of the numeric data, our
interest is in the robust development not being affected by noise. Undoubtedly, the use of the
median is a good starting point. Let us recall that the median is an order statistic and is formed
on the basis of an ordered set of numeric values. In the case of an odd number of data points
in the data set, the point located in the middle of this ordered sequence is the median. When
we encounter an even number of data points in the granulation window, instead of picking
an average of the two points located in the middle, we consider these two points to form the
core of a fuzzy set. Thus, depending upon the number of data points, we end up with either a
triangular or trapezoidal membership function.

Having fixed the modal value of A (that could be a single numeric value, “m”, or a cer-
tain interval [m, n]), the optimization of the spreads of the linear portions of the membership
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functions is carried out separately for their increasing and decreasing portions. We consider the
increasing part of the membership function (the decreasing part is handled analogously). Re-
ferring to Figure 3.4, the two requirements guiding the design of the fuzzy set are transformed
into the corresponding multiobjective optimization problem outlined as follows:

(a) Maximize the experimental evidence of the fuzzy set; this implies that we tend to “cover”
as many numeric data as possible, that is, the coverage has to be made as high as possible.
Graphically, in the optimization of this requirement, we rotate the linear segment up
(clockwise) as illustrated in Figure 3.4. Formally, the sum of the membership grades
A(xk),

∑

k A(xk), where A is the linear membership function to be optimized and xk is
located to the left to the modal value, has to be maximized.

(b) Simultaneously, we would like to make the fuzzy set as specific as possible so that is
comes with some well-defined semantics. This requirement is met by making the support
of A as small as possible, that is, mina |m –a|.

These two requirements form the crux of the principle of justifiable granularity (Bortolan and
Pedrycz, 2002; Pedrycz and Vukovich, 2002). To accommodate the two conflicting require-
ments, we combine (a) and (b) in the form of a ratio that is maximized with respect to the
unknown parameter of the linear section of the membership function

max
a

∑

k
A(xk)

|m − a| (3.14)

The linearly decreasing portion of the membership function is optimized in the same way. The
overall optimization returns the parameters of the fuzzy number in the form of the lower and
upper bound (a and b, respectively) and its support (m or [m, n]). We can write down such
fuzzy numbers as A(a, m, n, b). We exclude the trivial solution of a = m, in which case the
fuzzy set collapses to a single numeric entity.

Example 3.5. Let us consider a geometric figure that resembles a fuzzy circle, Figure 3.5.
The coordinates of the central point are given as (x0, y0). Let us represent the figure as a fuzzy
circle, that is, a circle whose radius is a fuzzy set (fuzzy number).

φi

ri

Figure 3.5 Example of figures to be represented as fuzzy circles (a) and a way of generating the
numeric values of radius at successive angles of the figure (b).
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The membership of the fuzzy radius is determined on the basis of numeric values of the
radii obtained for several successive discrete values of the angle φi, thus giving rise to the
values of the corresponding distance r1, r2, . . . , rn. Next, the determination of the fuzzy set of
the radius (fuzzy circle) is realized following the optimization scheme governed by (3.12).

3.1.7 Design of Fuzzy Sets through Fuzzy Clustering: From Data to their
Granular Abstraction

Fuzzy sets can be formed on the basis of numeric data through their clustering (groupings).
The groups of data give rise to membership functions that convey a global, more abstract view
of the available data. In this regard the fuzzy c-means (FCM, for short) algorithm is one of the
commonly used mechanisms of fuzzy clustering (Bezdek, 1981).

Let us review its formulation, develop the algorithm, and highlight the main properties
of the fuzzy clusters. Given a collection of n-dimensional data sets {xk}, k = 1, 2, . . . , N,
the task of determining its structure – a collection of “c” clusters – is expressed as a mini-
mization of the following objective function (performance index) Q regarded as a sum of the
squared distances:

Q =
c

∑

i=1

N
∑

k=1

um
ik‖xk − vi‖2 (3.15)

where v1, v2, . . . , vc are n-dimensional prototypes of the clusters and U = [uik] stands for
a partition matrix expressing a way of allocating the data to the corresponding clusters; uik

is the membership degree of data xk in the ith cluster. The distance between the data zk and
prototype vi is denoted by ‖.‖. The fuzzification coefficient m (> 1.0) expresses the impact of
the membership grades on the individual clusters.

A partition matrix satisfies two important properties:

(a) 0 <

N
∑

k=1

uik < N , i = 1, 2, . . . , c (3.16)

(b)
c

∑

i=1

uik = 1, k = 1, 2, . . . , N (3.17)

Let us denote by U a family of matrices satisfying these two requirements (a) and (b). The first
requirement states that each cluster has to be nonempty and different from the entire set. The
second requirement states that the sum of the membership grades should be confined to one.

The minimization of Q is completed with respect to U ∈ U and the prototypes vi of
V = {v1, v2, . . . , vc} of the clusters. More explicitly, we write this as follows:

min Q with respect to U ∈ U, v1, v2, . . . ,vc ∈ Rn (3.18)

From the optimization standpoint, there are two individual optimization tasks to be carried out
separately for the partition matrix and the prototypes. The first one concerns the minimization
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with respect to the constraints given the requirement of the form (3.17), which holds for each
data point xk. The use of Lagrange multipliers transforms the problem into its constraint-free
version. The augmented objective function formulated for each data point, k = 1, 2, . . . , N,
reads

V =
c

∑

i=1

um
ikd2

ik + λ

(
c

∑

i=1

uik − 1

)

(3.19)

where d2
ik = ‖xk − vi‖2. Proceeding with the necessary conditions for the minimum of V for

k = 1, 2, . . . , N gives

∂V

∂ust
= 0

∂V

∂λ
= 0 (3.20)

where s = 1, 2, . . . , c, t = 1, 2, . . . , N. Now we calculate the derivative of V with respect to
the elements of the partition matrix in the following way:

∂V

∂ust
= mum−1

st d2
st + λ (3.21)

From (3.20) and using (3.21) we calculate the membership grade ust to be equal to

ust = −
(

λ

m

) 1
m−1

d
2

m−1
st (3.22)

Given the normalization condition
∑c

j=1 ujt = 1 and substituting it into (3.22) one has

−
(

λ

m

) 1
m−1

c
∑

j=1

d
2

m−1
jt = 1 (3.23)

After some rearrangements of the above expression by isolating the term including the La-
grange multiplier, one obtains

−
(

λ

m

) 1
m−1

= 1
c∑

j=1
d

2
m−1

jt

(3.24)

Inserting this expression into (3.22), we obtain the successive entries of the partition matrix

ust = 1

c∑

j=1

(

d2
st

d2
jt

) 1
m−1

(3.25)
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The optimization of the prototypes vi is carried out assuming the Euclidean distance between
the data and the prototypes, that is,

‖xk − vi‖2 =
n

∑

j=1

(xkj − vij)
2

The objective function now reads

Q =
c

∑

i=1

N
∑

k=1

um
ik

n
∑

j=1

(xkj − vij)
2

and its gradient with respect to vi, ∇vi Q, made equal to zero yields the system of linear
equations

N
∑

k=1

um
ik(xkt − vst) = 0, s = 1, 2, . . . , c, t = 1, 2, . . . , n (3.26)

Thus

vst =

N∑

k=1
um

ik xkt

N∑

k=1
um

ik

(3.27)

We should emphasize that the use of some other distance functions different from the Euclidean
one carries some computational complexity and the formula for the prototype cannot be
presented in the concise manner as given above.

Overall, the FCM clustering is completed through a sequence of iterations where we start
from some random allocation of data (a certain randomly initialized partition matrix) and
carry out the following updates by successively adjusting the values of the partition matrix
and the prototypes. The iterative process is repeated until a certain termination criterion has
been satisfied. Typically, the termination condition is quantified by looking at the changes
in the membership values of the successive partition matrices. Let us denote by U(t) and
U(t + 1) the two partition matrices produced in two consecutive iterations of the algorithm. If
the distance ‖U(t + 1) − U(t)‖ is less than a small predefined threshold ε, then we terminate
the algorithm. Typically, one considers the Chebyshev distance between the partition matrices,
meaning that the termination criterion is as follows:

max
i,k

|uik(t + 1) − uik(t)| ≤ ε (3.28)

The key components of the FCM and a quantification of their impact on the form of the
produced results are summarized in Table 3.2.

The fuzzification coefficient has a direct impact on the geometry of fuzzy sets generated by
the algorithm. Typically, the value of “m” is assumed to be equal to 2.0. Lower values of m (that
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Table 3.2 The main features of the FCM clustering algorithm

Feature of the FCM algorithm Representation and optimization aspects

Number of clusters (c) Structure of the data set and the number of fuzzy sets estimated by
the method; the increase in the number of clusters produces lower
values of the objective function; however, given the semantics of
fuzzy sets, one should keep this number quite low (5–9
information granules)

Objective function Q Develops the structure aimed at the minimization of Q; iterative
process supports the determination of the local minimum of Q

Distance function ‖.‖ Reflects (or imposes) a geometry of the clusters one is looking for;
essential design parameter affecting the shape of membership
functions

Fuzzification coefficient (m) Implies a certain shape of membership functions present in the
partition matrix; essential design parameter. Low values of “m”
(being close to 1.0) induce characteristic function. Values higher
than 2.0 yield spiky membership functions

Termination criterion Distance between partition matrices in two successive iterations; the
algorithm terminates once the distance is below some assumed
positive threshold (ε), that is, ‖U(iter + 1) – U(iter)‖ < ε

are closer to one) yield membership functions that start resembling characteristic functions
of sets; most of the membership values become localized around one or zero. The increase
of the fuzzification coefficient (m = 3, 4, etc.) produces “spiky” membership functions with
the membership grades equal to one at the prototypes and a rapid decline of the values when
moving away from the prototypes. Some illustrative examples of the membership functions
are included in Figure 3.6. Here the prototypes are equal to 1, 3.5, and 5 while the fuzzification
coefficient assumes values of 1.2 (a), 2.0 (b) and 3.5 (c). In addition to the varying shape
of the membership functions, observe that the requirement put on the sum of membership
grades imposed on the fuzzy sets yields some rippling effect: the membership functions are
not unimodal but may exhibit some ripples whose intensity depends upon the distribution of
the prototypes and the values of the fuzzification coefficient. The intensity of the rippling
effect is also affected by the values of m and increases with its higher values.

The membership functions offer the interesting feature of evaluating the extent to which a
certain data point is shared between different clusters and in this sense becomes difficult to
allocate to a single cluster (fuzzy set). Let us introduce the following index, which serves as a
certain separation measure:

φ(u1, u2, . . . , uc) = 1 − cc
c

∏

i=1

ui (3.29)

where u1, u2, . . . , uc are the membership degrees for some data point. If only one of the
membership degrees, say ui =1, and the remainder are equal to zero, then the separation index
attains its maximum equal to one. At the other extreme, when the data point is shared by
all clusters to the same degree, being equal to 1/c, then the value of this index is reduced
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Figure 3.6 Examples of membership functions of fuzzy sets; see the detailed description in the text.

to zero. This means that there is no separation between the clusters as reported for this
specific point.

It is worth emphasizing that the FCM algorithm is a highly representative method of
membership estimation that profoundly dwells on the use of experimental data. In contrast to
some other techniques presented so far that are also data driven, the FCM approach can easily
cope with multivariable experimental data.

3.1.8 Fuzzy Equalization as a Way of Building Fuzzy Sets Supported by
Experimental Evidence

The underlying principle of this approach is based on the observation that while fuzzy sets are
reflective of the perception of systems or phenomena, quite often there is some experimental
evidence in the form of data whose nature could be captured in a more synthetic manner
through the underlying probability function or probability density function p(x). The essence
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A1
A2 A3

Ac

a1 a2 a3 ac-1 ac

p(x)

Figure 3.7 A collection of fuzzy sets complying with the equalization rule; note the increased specificity
of fuzzy sets in the regions of high density (p(x)) of experimental data.

of fuzzy equalization can be articulated as follows. A collection of fuzzy sets {A1, A2, . . . , Ac}
used to granulate some variable (say, inflation, profit, length, pressure, etc.) is formed in such
a way that each fuzzy set in this family comes with the same level of experimental evidence.
Put more formally, we consider that the integral (or sum) of the form

∫

X

Ai (x)p(x) dx (3.30)

assumes the same value for all fuzzy sets Ai, i = 1, 2, . . . , c.
In other words, we require that the expected value expressed by (3.30) and computed for

each fuzzy set is approximately the same,
∫

X Ai (x)p(x) dx = g, where g is some constant.
The essence of this construct is illustrated in Figure 3.7. This way of developing fuzzy sets
is in agreement with our intuition: the less experimental evidence we have, the broader (less
specific) the corresponding fuzzy set should be.

The underlying optimization task is concerned with determination of the parameters of
the fuzzy sets (assuming that their form has been already specified) so that (3.26) becomes
satisfied. For triangular fuzzy sets with a half-overlap between neighboring fuzzy sets, this
optimization requires an adjustment of the vector of the modal values of the fuzzy sets.

Note that while fuzzy sets and probability are two orthogonal concepts, there are a num-
ber of methods of membership function estimation that invoke some probabilistic infor-
mation (Dishkant, 1981; Civanlar and Trussell, 1986; Hong and Lee, 1996; Masson and
Denoeux, 2006).

3.1.9 Several Design Guidelines for the Formation of Fuzzy Sets

The considerations presented above give rise to a number of general guidelines supporting the
development of fuzzy sets:

(a) Highly visible and well-defined semantics of information granules. No matter what the
determination technique is, one has to become familiar with the semantics of the resulting
fuzzy sets. Fuzzy sets are interpretable information granules with a well-defined meaning
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and this aspect needs to be fully captured. Given this, the number of information granules
has to be kept quite small, being restricted to 5–9 fuzzy sets.

(b) There are several fundamental views of fuzzy sets and, depending upon them, we could
consider the use of various estimation techniques (for example, by accepting the horizontal
or vertical view of fuzzy sets and adopting a pertinent technique).

(c) Fuzzy sets are context-sensitive constructs and as such require careful calibration. This
feature of fuzzy sets should be treated as a genuine advantage. The semantics of fuzzy sets
can be adjusted through shifting fuzzy sets or/and adjusting their membership functions.
The nonlinear transformation we introduced here helps complete an effective adjustment
of the membership functions, making use of some “standard” membership functions. The
calibration mechanisms being used in the design of the membership function are reflective
of the human centricity of fuzzy sets.

(d) We have delineated two major categories of approaches supporting the design of mem-
bership functions, that is, data-driven and expert (user)-based approaches. These are very
different in the sense of the origin of the supporting evidence. Fuzzy clustering is a fun-
damental mechanism of the development of fuzzy sets. It is important in the sense that
the method is equally suitable for one-dimensional and multivariable cases. The expert
or simply user-based methods of membership estimation are important in that they offer
some systematic and coherent mechanisms of elicitation of membership grades. With re-
gard to consistency of the elicited membership grades, the pairwise estimation technique
is of particular interest in providing well-quantifiable mechanisms for the assessment of
the consistency of the produced membership grades. The estimation procedures underline
some need for further development of higher types of constructs, such as fuzzy sets of
type 2 or higher, and fuzzy sets of higher order that may be ultimately associated with
constructs such as type 2 fuzzy sets or interval-valued fuzzy sets (this particular construct
is visible when dealing with the horizontal method of membership estimation that comes
with the associated confidence intervals).

(e) User-driven membership estimation uses the statistics of data but in an implicit manner.
The granular terms – fuzzy sets come into existence once there is some experimental
evidence behind them (otherwise there is no point forming such fuzzy sets).

(f) The development of fuzzy sets can be carried out in an stepwise manner. For instance, a
certain fuzzy set can be further refined, if required for the problem at hand. This could
lead to several more specific fuzzy sets that are associated with the fuzzy set formed at the
higher level. Being aware of the complexity of the granular descriptors, we should resist
the temptation to form an excessive number of fuzzy sets at a single level as such fuzzy
sets could easily lack any sound interpretation.

3.2 Aggregation Operations

Several fuzzy sets can be combined together (aggregated) thus leading to a single fuzzy set
forming the result of such an aggregation operation. For instance, when we compute the
intersection and union of fuzzy sets, the result is a fuzzy set whose membership function
captures information conveyed by the original fuzzy sets. This fact suggests a general view of
aggregation of fuzzy sets as a certain transformation performed on their membership functions.
In general, we encounter a wealth of aggregation operations (Dubois and Prade, 1980, Dubois
and Prade, 1985).
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Formally, an aggregation operation is an n-ary function g : [0,1]n → [0,1] satisfying the
following requirements:

Monotonicity : g(x1, x2, . . . , xn) > g(y1, y2, . . . , yn) if xi > y j (3.31)

Boundary conditions : g(0, 0, . . . ,0) = 0 and g(1, 1, . . . , 1) = 1 (3.32)

An element e ∈ [0,1] is called a neutral element of the aggregation operation “g” and an
element l ∈ [0,1] is called an annihilator (absorbing element) of the aggregation operation “g”
if, for each i = 1, 2, . . . , n, n ≥ 2 and for all x1, x2, . . . , xi−1, xi+1, . . . , xn ∈ [0,1] we have

g(x1, x2, . . . , xi−1, e, xi+1, . . . , xn) = g(x1, x2, . . . , xi−1, xi+1, . . . , xn) (3.33)

g(x1, x2, . . . , xi−1, l, xi+1, . . . , xn) = l (3.34)

Since triangular norms and conorms are monotonic, associative, and satisfy the boundary
conditions, they provide a wide class of associative aggregation operations whose neutral
elements are equal to one and zero, respectively. We are, however, not restricted to those as
the only available alternatives.

3.2.1 Averaging Operations

In addition to monotonicity and the satisfaction of the boundary conditions, averaging opera-
tions are idempotent and commutative They can be described in terms of the generalized mean
(Dyckhoff and Pedrycz, 1984)

g(x1, x2, . . . , xn) = p

√
√
√
√

1

n

n
∑

i=1

(xi )p, p ∈ R, p 
= 0 (3.35)

Interestingly, generalized mean subsumes some well-known cases of well-known averages
including

p = 1 g(x1, x2, . . . , xn) = 1

n

n
∑

i=1

xi arithmetic mean

p → 0 g(x1, x2, . . . , xn) = n

√
√
√
√

n
∏

i=1

xi geometric mean

p = −1 g(x1, x2, . . . , xn) = n
n∑

i=1
1/xi

harmonic mean

p → −∞ g(x1, x2, . . . , xn) = min(x1, x2, . . . , xn) minimum

p → ∞ g(x1, x2, . . . , xn) = max(x1, x2, . . . , xn) maximum
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The following inequalities hold:

min(x1, x2, . . . , xn) ≤ g(x1, x2, . . . , xn) ≤ max(x1, x2, . . . , xn) (3.36)

Therefore generalized means range over the values not being covered by triangular norms and
conorms.

3.3 Transformations of Fuzzy Sets

Transformations of elements (points) through functions are omnipresent. An immediate gener-
alization of such point transformations involves set transformations between spaces. Mappings
of fuzzy sets between universes constitute another generalization of mapping sets between
spaces. Thus, point transformations can be expanded to cover transformations involving fuzzy
sets. Transformations of this nature can be realized using either functions or relations. In both
cases these transformations constitute an essential component of various pursuits including
system modeling and control applications, pattern recognition, and information retrieval, just
to name a few representative areas. This section introduces two important mechanisms to
transform fuzzy sets, namely the extension principle and the calculus of fuzzy relations. We
elaborate on their essential properties, present the algorithmic aspects, and discuss various
interpretations of the resulting constructs.

3.3.1 The Extension Principle

The extension principle is a fundamental construct that enables extensions of point operations
to operations involving sets and fuzzy sets. Intuitively, the idea is as follows: given a function
(mapping) from some domain X to codomain (range) Y, the extension principle offers a
mechanism to transform a fuzzy set defined in X to some fuzzy set defined in Y.

Let f : X → Y be a function. Given any x ∈ X, y = f (x) denotes the image of “x” under “f ”,
that is, the point transformation of “x” under “f ”, Figure 3.8. This is the straightforward idea
that the customary notion of any function conveys. Pointwise transformations can be naturally
extended to handle transformations of sets.

Let P(X) and P(Y) be the power sets of X and Y and A ∈ P(X) a set. The image of A under
f can be determined by realizing point transformations y = f (x) for all x ∈ A. In this sense, the
image of A under f is some set B that arises in the following form:

B = f (A) = {y ∈ Y|y = f (x), ∀x ∈ A} (3.37)

Since A and B are sets, they can be expressed in terms of their characteristic functions
as follows:

B(y) = sup
x |y= f (x)

A(x) (3.38)

as displayed in Figure 3.9. Note that this mechanism provides a way to extend the notion of
functions regarded as point transformations to the notion of set functions. Once viewed in
terms of characteristic functions, it is natural to extend this notion to fuzzy sets as follows.
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Figure 3.8 An example of function “f ” along with its point transformation.
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Figure 3.9 Set transformation.



P1: OTA/XYZ P2: ABC
c03 JWST012-Pedrycz September 21, 2010 10:57 Printer Name: Yet to Come

86 Fuzzy Multicriteria Decision-Making: Models, Methods and Applications

-4 -3 -2 -1 0 1 2 3 4
0

2

4

6

8

10

x
(b)

f

-4 -3 -2 -1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

x

A(x)

(c)

A

0

2

4

6

8

10

00.5 1  
B(y)
 

(a) 

B  

y 

Figure 3.10 Extension principle applied in the case of a certain many-to-one mapping and finite
universes.

Let F(X) and F(Y) denote the families of all fuzzy sets defined in X and Y, respectively,
and f : X → Y be a function. Function “f ” induces a mapping f : F(X) → F(Y) such that if A
is a fuzzy set in X, then its image under F is a fuzzy set B = f (A) whose membership function
is expressed as (Klir and Yuan, 1995; Pedrycz and Gomide, 1998)

B(y) = sup
x :y= f (x)

A(x) (3.39)

For finite universes, consider X = {−3, −2, −1, 0, 1, 2, 3} and y = f (x) = x2. Given the fuzzy
set A = {0/−3, 0.1/−2, 0.3/−1, 1/0, 0.2/1, 0/2, 0/3} defined in X, the image B = f (A) is a
fuzzy set in Y = {y | y = x2} = {0, 1, 4, 9} whose membership function is B = {1/0, max(0.2,
0.3)/1, max(0, 0.1)/4, 0/9} = {1/0, 0.3/1, 0.1/4, 0/9}, see Figure 3.10.

The extension principle generalizes to functions of many variables as follows. Let Xi,
i = 1, . . . , n, and Y be universes and X = X1 × X2 × · · · × Xn. Consider fuzzy sets Ai on Xi,
i = 1, . . . , n, and a function y = f (x) with x = (x1, x2, . . . , xn)T a point of X. Fuzzy sets A1,
A2, . . . , An can be transformed through “f ” giving rise to a fuzzy set B = f (A1, A2, . . . , An) in
Y with the membership function

B(y) = sup
X|y= f (X)

min(A1(x1), A2(x2), K, An(xn)) (3.40)
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In (3.40), the min operation is a certain choice coming from the family of triangular norms.
Any t-norm can be adopted because each component xi occurs concurrently in x.

3.3.2 Fuzzy Numbers and Fuzzy Arithmetic

We say a membership function A : X → [0,1] is upper semi-continuous if the set {x ∈ X | A(x)
> α} is closed, that is, the α-cuts are closed intervals and, therefore, convex sets. If the universe
X is the set R of real numbers and the membership function is normal, A(x) = 1 ∀x ∈ [b, c],
then A(x) is a model of a fuzzy interval, with monotone increasing function fA : [a, b)→[0,1],
monotone decreasing function gA: (c, d]→[0,1], and null otherwise. Fuzzy intervals A(x) have
the following canonical form:

A(x) =

⎧

⎪⎪⎨

⎪⎪⎩

f A(x) if x ∈ [a, b)
1 if x ∈ [b, c]

gA(x) if x ∈ (c, d]
0 otherwise

(3.41)

where a ≤ b ≤ c ≤ d, see Figure 3.11(a).
When b = c, A(x) = 1 for exactly one element of X, and the fuzzy quantity is called a fuzzy

number, Figure 3.11(b).
In general, the functions fA and gA are semi-continuous from the right and left, respectively.

From a practical point of view, fuzzy intervals and numbers are mappings from the real line R
to the unit interval that satisfy a series of properties such as normality, unimodality, continuity,
and boundedness of support. As Figure 3.12 suggests, fuzzy intervals and numbers model our
intuitive notion of approximate intervals and approximate numbers.

Before we move on to a discussion of operations on fuzzy numbers, let us introduce a few
examples that motivate their use.

Consider that you have traveled for 2 hours at a speed of about 110 km/h. What was
the distance you traveled? The speed is described in the form of some fuzzy set S whose
membership function is given.

The next example is a more general version of the above problem.
You have traveled at a speed of about 110 km/h for about 3 hours. What was the distance

traveled? We assume that both the speed and time of travel are described by fuzzy sets.

1

A(x)

Ra d c b 0

1

A(x)

Ra b m 0

(b)(a)

fA

gA

fA

gA

Figure 3.11 Canonical form of a fuzzy interval (a) and fuzzy number (b).
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Figure 3.12 Examples of real numbers, fuzzy numbers, and intervals.

In a certain manufacturing process, there are five operations completed in series. Given the
nature of the manufacturing activities, the duration of each of them can be characterized by
fuzzy sets T1, T2, . . . , T5. What is the time of realization of this process?

Basically, there exist two fundamental methods for carrying out algebraic operations on
fuzzy numbers. The first method is based on interval arithmetic and α-cuts while the second
employs the extension principle. The fundamentals of these two methods are discussed next.

3.3.3 Interval Arithmetic and α-cuts

The first approach to computing with fuzzy numbers has its roots in the framework of interval
analysis, a branch of mathematics developed to deal with the calculus of tolerances. In this
framework, our interest lies in intervals of real numbers, [a, b], a, b ∈ R, such as [4,6],
[−1.5,3.2], and so forth. The formulas developed to perform the basic arithmetic operations,
namely addition, subtraction, multiplication, and division, are as follows (assuming that c,
d 
= 0 for the division operation):

Addition: [a, b] + [c, d] = [a + c, b + d] (3.42)

Subtraction: [a, b] − [c, d] = [a − d, b − c] (3.43)

Multiplication: [a, b].[c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] (3.44)

Division: [a, b]/[c, d] =
[

min

(
a

c
,

a

d
,

b

c
,

b

d

)

, max

(
a

c
,

a

d
,

b

c
,

b

d

)]

(3.45)
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Now, let A and B be two fuzzy numbers and let ∗ be any of the four basic arithmetic operations.
Thus, for any α ∈ (0,1], the fuzzy set A ∗ B is computed via the α-cuts Aα and Bα of A and
B, respectively

(A ∗ B)α = Aα ∗ Bα (3.46)

Recall that, by definition, the α-cuts Aα and Bα are closed intervals and therefore the formulas
of interval operations can be applied for each value of α. When ∗ is / (the division operation),
we require that 0 
∈ Bα ∀α ∈ (0,1].

After the interval operation is performed for α-cuts, the use of the representation theorem
leads us to the well-known relationship

A ∗ B =
⋃

α∈[0,1]

(A ∗ B)α (3.47)

In terms of the membership functions, we obtain

(A ∗ B)(x) = sup
α∈[0,1]

(α(A ∗ B)α(x)) = sup
α∈[0,1]

((A ∗ B) f
α (x)) (3.48)

where (A ∗ B) f
α (x) = α(A ∗ B)α(x).

Therefore, the interval arithmetic–α-cut method to perform fuzzy arithmetic is a general-
ization of computing known in interval arithmetic.

Example 3.6. If A and B are two triangular fuzzy numbers, denoted as A(x, a, m, b) and B(x,
c, n, d), then their α-cuts are determined as

Aα = [(m − a)α + a, (m − b)α + b]

Bα = [(n − c)α + c, (n − d)α + d]

Now let A = A(x, 1, 2, 3) and B = B(x, 2, 3, 4). Then, the corresponding α-cuts are equal to

Aα = [α + 1,−α + 3]

Bα = [α + 2,−2α + 5]

Therefore

(A + B)α = [2α + 3,−3α + 8]

(A − B)α = [3α − 4,−2α + 1]

(AB)α = [(α + 1)(α + 2), (−α + 3)(−2α + 5)]

(A/B)α = [(α + 1)/(−2α + 5), (−α + 3)(α + 2)]

(A/B)α = [(−α + 3)(α + 2), (α + 1)/(−2α + 5)]

Figure 3.13 shows the resulting fuzzy numbers A + B, A − B, AB and B/A, respectively.
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(d) Division
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Figure 3.13 Algebraic operations on triangular fuzzy numbers.

With the extension of the interval arithmetic and the use of α-cuts and the representation of
fuzzy sets, each fuzzy number can be regarded as a family of nested α-cuts. Subsequently,
these α-cuts are used to reconstruct the resulting fuzzy number. In essence, the use of α-cuts is
a sort of brute-force method of computing with fuzzy numbers. However, α-cuts are becoming
important in developing parametric representations of fuzzy numbers to control their shapes
and associated approximation error (Stefanini, Sorini, and Guerra, 2006).

3.3.4 Fuzzy Arithmetic and the Extension Principle

The second method of computing with fuzzy numbers uses the extension principle to extend
standard operations on real numbers to fuzzy numbers. Here the fuzzy set A ∗ B expressed on
R is defined using the extension principle

(A ∗ B)(z) = sup
z=x∗y

min(A(x), B(y)), ∀z ∈ R (3.49)
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Figure 3.14 Algebraic operations: the use of the extension principle with different triangular norms.

In general, considering the use of some t-norm and treating ∗ : R2 → R as an operation on the
real line, the operations on fuzzy numbers become

(A ∗ B) = sup
z=x∗y

(A(x) TB(y)), ∀z ∈ R (3.50)

Figure 3.14 illustrates the addition (A + B) of triangular fuzzy numbers A and B when using
the minimum t-norm Tm and the drastic product Td t-norm, respectively. Clearly, different
choices of t-norms produce different results. In general, if T1 ≤ T2 in the sense that a T1 b ≤
a T2 b, ∀a, b ∈ [0,1], then

sup
z=x∗y

(A(x) Td B(y)) ≤ sup
z=x∗y

(A(x) TB(y)) ≤ sup
z=x∗y

(A(x) Tm B(y)) ∀z ∈ R (3.51)

Therefore

Td (A ∗ B)(z) ≤ T (A ∗ B)(z) ≤ Tm (A ∗ B)(z)∀z ∈ R (3.52)

In the special case of the largest t-norm, which is minimum, Tm, the one we will concentrate
on in the remainder of this section, a fundamental result forming the basis of computing with
fuzzy numbers under the framework of the extension principle comes in the following form.
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Proposition: For any fuzzy numbers A and B and a continuous monotone binary operation ∗
on R, the following equality holds for all α-cuts with α ∈ [0,1]:

(A ∗ B)α = Aα ∗ Bα (3.53)

Proof of this proposition is given in Nguyen and Walker (1999). There are important conse-
quences of the proposition:

1. Since Aα and Bα are closed and bounded for all α, (A ∗ B)α also is closed and bounded.
2. Because A and B are fuzzy numbers, they are normal and therefore A ∗ B is also normal.

These two observations clearly demonstrate that the extension principle produces a transfor-
mation that is a fuzzy number and therefore is a sound mechanism for performing algebraic
operations with fuzzy numbers. Furthermore we have:

3. Computation of A ∗ B can be done by combining the increasing and decreasing parts of the
membership functions of A and B.

Figure 3.15 offers a graphical visualization of the above statement.

The results above can be generalized to broader classes and choices of t-norms and opera-
tions with fuzzy quantities (Mares, 1997; Klement, Mesiar, and Pap, 2000; Stefanini, 2010).
Moreover, approximation schemes have been developed in the framework of interpolation of
a fuzzy function. In what follows we detail the basic operations with triangular fuzzy numbers

1
A B A∗B

x y z = x∗y

1
A B A∗B

x y z = x∗y

(a) 

(b) 

Figure 3.15 Combining increasing and decreasing parts of the membership functions of the fuzzy
numbers A and B.
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BA

                    a          m   c      b    n             d  

membership 

Figure 3.16 Examples of triangular fuzzy numbers A and B.

because they are by far the most commonly used in practice. Moreover, the analysis focusing
this class of fuzzy numbers reveals the most visible properties of fuzzy arithmetic.

3.3.5 Computing with Triangular Fuzzy Numbers

Consider two triangular fuzzy numbers A(x, a, m, b) and B(x, c, n, d). More specifically, A and
B are described by the following piecewise membership functions:

A(x) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − a

m − a
if x ∈ [a, m)

b − x

b − m
if x ∈ [m, b]

0 otherwise

B(x) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − c

n − c
if x ∈ [c, n)

d − x

d − n
if x ∈ [n, d]

0 otherwise

(3.54)

Let us recall that the modal values m and n identify a dominant, typical value, while the lower
and upper bounds, a or c and b or d, reflect the spread of the numbers. To simplify computing,
for the time being we consider fuzzy numbers with positive lower bounds a, c > 0.

The plots of examples of triangular fuzzy numbers are given in Figure 3.16. These will be
helpful in the clarification of detailed formulas.

3.3.6 Addition

The extension principle (3.49) applied to A and B to compute C = A + B yields

C(z) = sup
z=x+y

min(A(x), B(y)), ∀z ∈ R (3.55)

The resulting fuzzy number is normal, that is, C(z) = 1 for z = m + n.
Computations of the spreads of C can be done, according to statement 3 above, by treating

the increasing and decreasing parts of the membership functions of A and B separately.
Consider first that z < m + n. In this situation, the calculation involves the increasing parts

of the membership function of A and B. Note that there exist values x and y such that x < m
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and y < n for which we have

A(x) = B(y) = α α ∈ [0, 1] (3.56)

Based on this relationship we derive

x − a

m − a
= α (3.57)

along with

y − c

n − c
= α (3.58)

for x ∈ [a, m] and y ∈ [c, n]. Expressing x and y as functions of α we get

x = (m − α)α + a (3.59)

y = (n − c)α + c (3.60)

which are the same as the lower intervals we get using interval analysis, as should happen.
Replacing the values of x and y in z = x + y we have

z = x + y = (m − a)α + a + (n − c)α + c (3.61)

that is,

α = z − (a + c)

(m + n) − (a + c)
(3.62)

Notice that z has, as expected, the same lower limit value as the corresponding interval
associated with the α-cut we use with interval analysis.

Proceeding similarly for the decreasing portions of the membership functions, we obtain

b − x

b − m
= α (3.63)

along with

d − y

d − n
= α (3.64)

for x ∈ [m, b] and y ∈ [n, d]. Again, expressing x and y as functions of α we get

x = (m − b)α + b (3.65)

y = (n − d)α + d (3.66)
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Furthermore, replacing the values of x and y in z = x + y we have

z = x + y = (m − b)α + b + (n − d)α + d (3.67)

that is,

α = (b + d) − z

(b + d) − (m + n)
(3.68)

As expected, z has the same upper limit value as the corresponding interval associated with
the α-cut we use with interval analysis.

Finally, from (3.62) and (3.67) we obtain the membership function of C = A + B:

C(z) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z − (a + c)

(m + n) − (a + c)
if z < m + n

1 if z = m + n

(b + d) − z

(b + d) − (m + n)
if z > m + n

(3.69)

Interestingly, C is also a triangular fuzzy number. To emphasize this fact, we use a concise
notation

C = C(x, a + c, m + n, b + d) (3.70)

Whenever several triangular fuzzy numbers are added, the result is also a triangular fuzzy
number. In general, however, shape preserving does not hold for any shape of fuzzy numbers
and t-norms being used in the extension principle.

3.3.7 Multiplication

As with addition, we look first at the increasing parts of the membership functions from which
we obtain

x = (m − a)α + a (3.71)

y = (n − c)α + c (3.72)

The product z of x and y becomes

z = xy = [(m − a)α + a][(n − c)α + c] (3.73)

z = (m − a)(n − c)α2 + (m − a)α c + a(n − c)α + ac = f1(α) (3.74)
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If ac ≤ z ≤ mn, then the membership function of the fuzzy number D = AB is an inverse of
the function f 1(α), namely

D(z) = f −1
1 (z) (3.75)

Similarly, consider the decreasing parts of the fuzzy numbers A and B:

x = (m − b)α + b (3.76)

y = (n − d)α + d (3.77)

z = xy = [(m − b)α + b][(n − d)α + d] (3.78)

z = (m − b)(n − d)α2 + (m − b)α d + b(n − d)α + bd = f2(α) (3.79)

As before, for any mn ≤ z ≤ bd we have

D(z) = f −1
2 (z) (3.80)

Note that in this case the fuzzy number D is does not have a triangular membership function,
which means that multiplication of triangular fuzzy numbers does not preserve the original
shape. Instead, multiplication of piecewise linear membership functions produces a quadratic
form of the membership function of the resulting fuzzy number.

3.3.8 Division

Like multiplication, for the increasing parts of the membership functions

x = (m − a)α + a (3.81)

y = (n − c)α + c (3.82)

we compute the division z = x/y which, after replacing x and y, is

z = x

y
= (m − a)α + a

(n − c)α + c
= g1(α) (3.83)

so that, for a/c ≤ z ≤ m/n, the fuzzy number E = A/B has the following membership function:

E(z) = g−1
1 (α) (3.84)

Analogously, for the decreasing parts of the membership functions

x = (m − b)α + b (3.85)

y = (n − d)α + d (3.86)

we obtain

z = x

y
= (m − b)α + b

(n − d)α + d
= g2(α) (3.87)
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Thus, for m/n ≤ z ≤ b/d, the membership function of E = A/B is

E(z) = g−1
2 (α) (3.88)

Clearly, the membership function of E is a rational function. Hence, division, like multiplica-
tion, does not preserve the shape of the triangular membership functions.

3.4 Conclusions

We have discussed various approaches and algorithmic aspects of the design of fuzzy sets.
The estimation of membership functions is a multifaceted problem and the choice of a suitable
method relies on the choice of the available experimental data and domain knowledge. For the
user-driven approaches, it is essential to evaluate and flag the consistency of the results. While
some of the methods (the pairwise comparison) come with this essential feature, the results
produced by the others have to be carefully inspected.

Transformation of fuzzy sets in the form of the extension principle and composition gen-
eralizes similar transformations found in set theory. They play an important role in providing
further transformations through fuzzy relational equations, associative memories, and alge-
braic operations with fuzzy numbers.

Fuzzy numbers are convex and normal fuzzy sets defined on the set of real numbers.
Operations with fuzzy numbers can be developed with the help of the extension principle.
In particular, standard fuzzy arithmetic can be approached choosing the min t-norm. Several
other choices are possible, but practice has shown that standard fuzzy arithmetic still is one of
the highest applicability.

Exercises

Problem 3.1. In the horizontal mode of construction of a fuzzy set of safe speeds on a highway,
the yes–no evaluations provided by a panel of nine experts are the following:

x 20 50 70 80 90 100 110 120 130 140 150 160

No. of yes responses 0 1 1 2 6 9 9 5 5 4 3 2

Determine the membership function and assess its quality by computing the corresponding
confidence intervals. Interpret the results and identify the points of the universe of discourse
that may require more attention.

Problem 3.2. In the vertical mode of membership function estimation, we are provided with
the following experimental data:

α 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Range of X [−2,13] [−1,12] [0,11] [1,10] [2,9] [3,8] [4,7] [5,6]

Plot the estimated membership function and suggest its analytical expression.
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D 

Figure 3.17 Forming a fuzzy set of distance between a geometric figure with fuzzy boundaries and a
point.

Problem 3.3. In the calculations of the distance between a point and a certain geometric figure,
we assumed that the boundaries of the figure are well defined. How can we proceed with a more
general case when the boundaries are not clearly defined, that is, the figure itself is defined by
some membership function, Figure 3.17? In other words, the figure is fully characterized by
some membership function R(x) where x is a vector of coordinates of x. If R(x) =1, the point
fully belongs to the figure while lower values of R(x) indicate that x is closer to the boundary
of R.

Problem 3.4. Construct a fuzzy set describing the distance between the point of (5, 5) from
the circle x2 + y2 = 4.

Problem 3.5. We maximize a function f (x) = (x − 6)4 in the range of [3, 10]. Suggest
a membership function describing a degree of membership of the optimal solution which
minimizes f (x). What conclusion could you draw based on the obtained form of the membership
function?

Problem 3.6. The results of pairwise comparisons of four objects being realized on a scale of
1–5 are given in the following matrix form:

⎡

⎢
⎢
⎣

1 5 2 4
1/5 1 3 1/3
1/2 1/3 1 1/5
1/4 3 5 1

⎤

⎥
⎥
⎦

What is the consistency of the findings? Evaluate the effect of the lack of transitivity. Determine
the membership function of the corresponding fuzzy set.

Problem 3.7. In the method of pairwise comparisons, we use different scales involving various
levels of evaluation, typically ranging from 5 to 9. What impact could the number of these
levels have on the produced consistency of the results? Can you offer any guidelines on how
to achieve a high consistency? What would be an associated tradeoff that one should take into
consideration here?

Problem 3.8. Construct a fuzzy set of large numbers for the universe of discourse of integer
numbers ranging from 1 to 10. It has been found that the experimental results of the pairwise
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comparison could be described in the form

r (x, y) =
{

x − y if x > y
1 if x = y

(for x < y we consider the reciprocal version of the above expression, that is, 1/(x − y)).

Problem 3.9. In the fuzzy c-means (FCM) algorithm, the shape of the resulting membership
function depends upon the value of the fuzzification coefficient (m). How does the mean
value of the membership function relate to the values of “m”. Run the FCM algorithm on the
one-dimensional data set

{1.3 1.9 2.0 5.5 4.9 5.3 4.5 − 1.3 0.0 0.3 0.8 5.1 2.5 2.4 2.1 1.7}

considering that we have c = 3 clusters. Next, plot the relationship between the average of all
membership grades and the associated fuzzification coefficient. For which values of “m” does
the average of membership grades differ from 0.33 for less than δ? Consider several values of
δ, say 0.2, 0.1, and 0.05. What can you say about the impact of “m” on the resulting average?

Problem 3.10. Consider a family of car makes, say C1, C2, . . . , Cn. We are interested in
forming fuzzy sets of economy, comfort, and safety, say Aeconomy, Acomfort, and Asafety. Use
a method of pairwise comparison to build the corresponding fuzzy sets. Next, using the
method of pairwise comparison, evaluate the car makes with respect to the overall quality
(which involves economy, comfort, and safety). Given the already constructed fuzzy sets of
the individual attributes and the overall quality Aoverall, what relationship could you establish
between them?

Problem 3.11. Consider a fuzzy set of a safe speed on an average highway, Figure 3.18.
How would this membership be affected when redefining this concept in the following

settings of (a) an autobahn (note that on these German highways there is no speed limit)
and (b) a snowy country road? Elaborate on the impact of various weather conditions on the
corresponding membership function. From the standpoint of the elicitation of the membership
function, how could you transform the original membership function to address the needs of

60         80            100         120        km/h

membership

1 

Figure 3.18 A fuzzy set of a safe speed on an average highway.
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the specific context in which it is planned to be used?

G =
⎡

⎣

0.5 1.0 0.7 0.9
0.4 1.0 0.2 0.1
0.6 0.9 1.0 0.4

⎤

⎦ W =

⎡

⎢
⎢
⎣

0.9 0.3 0.1 0.7 0.6 1.0
0.1 0.1 0.9 1.0 1.0 0.4
0.0 0.3 0.6 0.9 1.0 0.0
1.0 0.0 0.0 0.0 1.0 1.0

⎤

⎥
⎥
⎦

Problem 3.12. Consider X = {1, 2, 3, 4} and the fuzzy set A = {0.1/1, 0.2/2, 0.7/3, 1.0/4}
defined in this space. Also, let Y = {1, 2, 3, 4, 5, 6}. Given a function f : X → Y such that
y = f (x) = x + 2, show that B = f (A) = {0.1/3, 0.2/4, 0.7/5, 1.0/6}.

Problem 3.13. Determine the α-cuts of the fuzzy set A whose membership function is equal
to

A(x) =
{

2x − x2 if 0 ≤ x ≤ 1
0 otherwise

Let f (x) = 2x − x2. Compute the image of the α-cuts of the fuzzy set A under “f ”. Sketch the
transformations of the α-cuts.

Problem 3.14. Develop, analytically, the membership function of the fuzzy number F that is
the subtraction of fuzzy numbers A and B, namely F = A − B.

Problem 3.15. Consider fuzzy numbers A and B whose membership functions are given in the
form

A(x) =
{

exp[−(x − m)2/k] a ≤ x ≤ b
0 otherwise

B(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ a

x − a

m − a
if x ∈ [a, m]

b − x

b − m
if x ∈ [m, b]

0 if x ≥ b

Show that their α-cuts are given in the form

Aα =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

[

m −
√

ln

(
1

αk

)

, m −
√

ln

(
1

αk

)]

if α ≥ exp

[

−
(−(a − m)2

k

)]

[a, b] if f α < exp

[

−
(−(a − m)2

k

)]
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and

Bα = [(m − a)α + a, (m − b)α + b] ∀α ∈ [0, 1]

Sketch the membership functions of fuzzy sets of the addition, subtraction, multiplication, and
division of A and B.

Problem 3.16. Are the parabolic fuzzy numbers A, B, C. . . whose membership functions come
in the form

P(x, m, a) =

⎧

⎪⎨

⎪⎩

1 −
(

x − m

a

)2

if x ∈ [m − a, m + a]

0 otherwise

closed under the addition operation? Justify your answer.
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4
Continuous Models of
Multicriteria Decision-Making
and their Analysis

In this chapter, we concentrate on the construction, analysis, and application of continuous
models of multicriteria decision-making (models of multiobjective decision-making). The
basic definitions related to multicriteria decision-making are presented. The commonly utilized
approaches to multiobjective decision-making are briefly described. A great deal of attention
is given to the Bellman–Zadeh approach to decision-making in a fuzzy environment and its
application to multicriteria problems. This approach can be regarded as a suitable conceptual
and algorithmic method to develop harmonious solutions to this category of problems. The use
of this approach is illustrated by solving problems coming from the multicriteria allocation of
resources or their shortages as well as those problems encountered in power engineering.

4.1 Continuous Models (〈X, M〉 Models) of Multicriteria
Decision-Making

When solving continuous problems of multicriteria decision-making (problems of mul-
tiobjective decision-making) or analyzing 〈X, M〉 models, a set of objective functions
F(x) = {F1(x), F2(x), . . . , Fq (x)} is considered while the problem itself calls for the simul-
taneous optimization of all objective functions, that is,

Fp(x) → extr
x∈L

, p = 1, 2, . . . , q (4.1)

where q ≥ 2 and L is a set of feasible solutions in Rn . Depending upon the nature of the
problem under consideration, the term “extr” denotes the minimum or maximum.

As was stated in Section 1.2, in solving multicriteria problems we encounter the uncertainty
of goals, which is difficult to overcome and handle because “we simply do not know what we
want”. This will be pondered upon in the following considerations.
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From the point of view of the traditional (monocriteria) optimization, the problem formulated
within the framework of the model (4.1), most likely, cannot be considered as being posed
correctly. In particular, the notion of a complete optimal solution is considered by Sakawa
(1993). More specifically, let us consider that all Fp(x), p = 1, 2, . . . , q, are to be minimized.
We say a point x∗ is a complete optimal solution if and only if there exists x∗ ∈ L such that
Fp(x∗) ≤ Fp(x), p = 1, 2, . . . , q, for all x ∈ L. Also, the terms ideal solution or utopia point
are equivalent because, in general, a complete optimal solution that simultaneously minimizes
(or maximizes) all objective functions does not exist if these objective functions conflict each
other. Thus, in reality the scalar concept of an “optimum” cannot be applied directly and has
to be redefined for multicriteria decision-making.

In terms of the analysis of the 〈X, M〉 models, the definition of optimality is not straightfor-
ward. The main difficulty comes from the presence of conflicting objective functions, where
an improvement in the sense of one objective function may lead to a deterioration in other
objective function(s). For example, the maximization of reliability of power supply can be
reached by a satiation of electrical networks with switching devices. However, it leads to an
increase of network costs, working against the objective to minimize costs. Tradeoffs exist
between such conflicting objective functions, and the ultimate task is to find solutions that
allow one to effectively balance these tradeoffs. Such a balance is achieved when a solution
cannot improve any objective function without degrading one or more objective functions.
These solutions are referred as nondominated solutions, efficient solutions, or Pareto-optimal
solutions (Pareto, 1886), which were briefly discussed in Section 1.2 and are considered in
more detail in the next section.

4.2 Pareto-Optimal Solutions

We provide some essential definitions (Hwang and Masud, 1979; Zeleny, 1982; Sakawa,
1993; Ehrgott, 2005) that are helpful when talking about the analysis of 〈X, M〉 models. To
focus our considerations, we assume that the problem at hand requires minimization of the
objective functions.

Domination: A solution x1 dominates a solution x2 if and only if:

� x1 is not worse than x2 in all objective functions, that is, Fp(x1) ≤ Fp(x2), ∀p = 1, 2, . . . , q;
� x1 is strictly better than x2 in at least one objective functions, that is, ∃p = 1, 2, . . . , q:

Fp(x1) < Fp(x2).

Similarly, for the objective space, a solution F1(x) dominates another solution F2(x) if F1(x)
is not worse than F2(x) in all values of objective functions, and F1(x) is better than F2(x) in
at least one of the values of objective functions.

It is evident that that x1 is better than x2 (that is, x1 dominates x2), which happens when
F(x1) dominates F(x2).

Weak domination: A solution x1 weakly dominates a solution x2 if and only if:

� x1 is not worse than x2 in all objective functions, that is, Fp(x1) ≤ Fp(x2), ∀p = 1, 2, . . . , q.

Pareto-optimal solution: A point x∗ is a Pareto-optimal solution if there does not exist a
solution x �= x∗ ∈ L that dominates it.
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The Pareto-optimal solutions, as indicated above, are also named nondominated solutions
and efficient solutions.

For the objective space, F∗(x) is Pareto optimal if x is a Pareto-optimal solution.
All Pareto-optimal solutions form a Pareto-optimal solution set �P (that has such a property

that solutions x ∈ �P cannot be simultaneously improved on all objective functions). The
corresponding points in the objective space form a Pareto-optimal front �P

F .

Weak Pareto-optimal solution: A point x∗ is a weak Pareto-optimal solution if there does
not exist a solution x �= x∗ ∈ X that weakly dominates it.

All weak Pareto-optimal solutions form a set of weak Pareto-optimal solutions �W P . The
corresponding points in the objective space form a Pareto-optimal frontier �P

F .
Let �C O denote a complete optimal solution set. Then, from the above definitions, we can

construct the following relationships:

�C O ⊆ �P ⊆ �W P (4.2)

In principle, the concept of the Pareto-optimal solution set is fundamental because a solution
of a multicriteria decision-making problem must belong to this set. However, in general,
its construction is usually a complicated and computationally cumbersome task. Diverse
methods of building Pareto-optimal solution sets were discussed, for example, by Das and
Dennis (1998), Deb (2001), Coelho, Van Veldhuizen, and Lamont (2002), and Statnikov and
Matusov (2002).

In reality, the solution of multiobjective decision problems consists of several stages (Coelho,
2000). However, many researchers tend to concentrate on issues related to the construction of
the Pareto-optimal solution sets, considering them as solutions to the multiobjective decision-
making problems. Note that the Pareto-optimal solutions do not provide any insight into the
process of decision-making itself (a DM still has to choose manually a final solution or a
preferred solution), since they are really a useful generalization of a utility function under
conditions of minimum information (that is, all objective functions are considered as having
equal importance; in other words, a DM does not provide any preference for the objectives).
Thus, the issue is how to incorporate DM preferences into the decision-making process.

Taking the above into account, it should be stressed that although the step of analyzing
〈X, M〉 models, associated with determining the Pareto-optimal solution set, is useful, it does
not permit one to obtain unique solutions to real-world problems. It is necessary to choose a
concrete Pareto-optimal solution through DMs’ involvement in further information processing.

4.3 Approaches to the Use of DM Information

A possible way to classify approaches that help one to incorporate the information of a DM is
based on the time (within the decision-making process) when this information is presented and
applied. In accordance with this criterion, there exist three approaches: a priori, a posteriori,
and an interactive one (for instance, Horn, 1997; Coelho, 2002).

If preferences are expressed a priori, a DM has to define them in advance (before actually
realizing the decision process). In the procedures of a priori type, it is directly or indirectly as-
sumed that all information, required to determine the most preferable solution, is incorporated
into a formal model, that is, in the description of a set of alternatives and objective functions,



P1: OTA/XYZ P2: ABC
c04 JWST012-Pedrycz September 21, 2010 9:10 Printer Name: Yet to Come

106 Fuzzy Multicriteria Decision-Making: Models, Methods and Applications

and, consequently, can be extracted from the model by applying some transformations used in
a constructive manner.

Procedures that are of a posteriori type are usually associated with the availability of
some system of hypotheses or axioms, which are to be verified for each individual situation
of decision-making. These hypotheses or axioms are considered as additional and are not
included in the formal model. If the verification of the axioms leads to a positive result, it
is possible to construct a convincing mode to choose the best alternative. This verification is
associated with obtaining and applying additional information provided by a DM.

Although a priori and a posteriori decision-making approaches are common in the literature
related to decision-making (Coelho, 2000), an interactive approach (it also uses additional
information of a DM, however, as a progressive articulation of preferences) has been favored
by researchers (Gardiner and Steuer, 1994) for several reasons, as discussed, for example, by
Monarchi, Kisiel, and Duckstein (1973).

When applying the interactive approach, the procedures of successively improving the solu-
tion quality are realized as a transition from x0

α ∈ �P ⊆ L to x0
α+1 ∈ �P ⊆ L by considering

information Iα of a DM:

x0
1 , F(x0

1 )
I1−→ x0

2 F(x0
2 )

I2−→ · · · Iα−1−→ x0
α, F(x0

α)
Iα−→ · · · Iω−1−→ x0

ω, F(x0
ω) (4.3)

The process (4.3) serves for two types of adaptation (taking this into account, the interactive
approach itself is also called adaptive): computer to preferences of a DM and a DM to the
problem. The first type of adaptation is based on information being received from a DM. The

second type of adaptation is realized as a result of the steps x0
α, F(x0

α)
Iα−→ x0

α+1, F(x0
α+1), which

allow a DM to understand the relationships between his/her needs and the possibilities of their
satisfaction by the model governed by (4.1). This explains the ability to construct sufficiently
universal procedures of multiobjective decision-making. The types of such procedures are
implied by the variety of applied forms of additional information representation. For instance,
it is possible to distinguish the following forms:

� DM identifies significance of objective functions, that is, indicates proper assessment of
weights of the criteria.

� DM identifies some desired levels of objective functions (goal values of objective functions,
lower and/or higher admissible values of objective functions, admissible deviations from
goal values of objective functions).

� DM compares sets of presented alternatives.
� Information provided by DM includes different combinations of the first three types

of reports.

The taxonomy of the approaches that facilitates a way to incorporate information of a DM
in the decision-making process is not complete and is relatively conditional. For instance,
although many works in the field of multicriteria decision-making associate methods based on
utility theory (Keeney and Raifa, 1976) with the a posteriori approach, some authors (Hwang
and Masud, 1979; Lai and Hwang, 1996) link these methods to the a priori approach. Besides,
there exist some decision-making procedures which cannot be uniquely related to one or
another approach. Here we can refer to the mixed procedures (a priori and a posteriori, or a
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posteriori and interactive). Finally, the same method of the groups of multiobjective decision-
making methods discussed in the next section can be realized within the framework of different
approaches for incorporating information of a DM in the decision-making process. However,
the construction of some taxonomy helps us to adequately represent the capabilities of diverse
types of multicriteria decision-making methods as well as carefully identify their advantages
and disadvantages.

4.4 Methods of Multiobjective Decision-Making

When formulating and solving multiobjective decision-making problems, it is necessary to
develop answers to some specific questions. Among these questions, it is important to raise
the following:

Normalization of objective functions. In multiobjective decision-making
problems, different objective functions may have different physical meaning
and, consequently, are expressed in different units and their scales are not
commensurable. Taking this into consideration, a comparison of the quality of
obtained solutions for each objective function is impossible. The operation of
unifying scales of objective functions to a unique scale is called normalization.

Choice of the principle of optimality. In analyzing 〈X, M〉 models, the principle
of optimality defines the properties of the optimal solution and answers in which
sense the optimal solution excels all other possible solutions as well as offering
guidelines on the search for optimal solutions. The principle of optimality is
fundamental to multiobjective decision-making.

Consideration of priorities of objective functions. Usually, considering the
specificity of the problem, it becomes apparent that different objective functions
have different importance, that is, one objective function has a higher priority
relative to another one. It is intuitive to take this information into consideration
in the choice of the principle of optimality, assigning higher priority to more
important objective functions. In this regard, the following question arises: how
do we define the formal description of the priority and the degree of its influence
on the solution to the multiobjective problem?

The answers to the points posed above, and, subsequently, the development of multiobjective
methods, were developed in different ways (Hwang and Masud, 1979; Zeleny 1982; Dubov,
Travkin, and Yakimets, 1986; Lai and Hwang, 1996; Rao, 1996; Ehrgott, 2005). We identify
those in common usage as:

� methods based on constructing convolutions;
� methods based on placing constraints on levels of objective functions, including a lexico-

graphic method;
� methods of goal programming and of a global criterion.

The first group of attempts to solve multiobjective decision-making problems was based on
their reduction to scalar (monocriteria) problems by constructing some types of convolutions
(aggregations) (Kuhn and Tucker, 1951; Zadeh, 1963).
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The simplest convolution reads as follows:

�(x) =
q∑

p=1

f p(x) (4.4)

where f p(x) = Fp(x), p = 1, 2, . . . , q, if all objective functions Fp(x) are of a homogeneous
character or exhibit the same semantics. However, if the objective functions have different
meaning, it becomes impossible, as indicated above, to compare the quality of obtained
solutions with respect to each objective function.

It is possible to identify several requirements related to the normalization of objective
functions. However, the most important of them is the necessity to assign equal values to
f p(x0

p) or f p(x00
p ) where x0

p = arg minx∈L Fp(x) for minimized objective functions and x00
p =

arg maxx∈L Fp(x) for maximized objective functions. The inclusion of this requirement permits
one to compare objective functions on the basis of their numeric values.

The above requirement is met by using the following normalization:

f p(x) =
max
x∈L

Fp(x) − Fp(x)

max
x∈L

Fp(x) − min
x∈L

Fp(x)
(4.5)

if the objective function Fp(x) is to be minimized. If the objective function Fp(x) is to be
maximized, then we utilize the following version of normalization:

f p(x) =
Fp(x) − min

x∈L
Fp(x)

max
x∈L

Fp(x) − min
x∈L

Fp(x)
(4.6)

It becomes clear that in order to construct (4.5) or (4.6) for any objective function it is necessary
to solve the following monocriteria problems:

Fp(x) → min
x∈L

(4.7)

and

Fp(x) → max
x∈L

(4.8)

Taking this into account, it is possible to apply another type of normalization

f p(x) =
min
x∈L

Fp(x)

Fp(x)
(4.9)

if the corresponding Fp(x) is to be minimized, or to use the normalization

f p(x) = Fp(x)

max
x∈L

Fp(x)
(4.10)
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Table 4.1 Normalization of the objective function

Fp(x) 10 11 12 13 14 15 16 17 18 19 20

f p(x) (4.5) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
f p(x) (4.6) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f p(x) (4.9) 1 0.91 0.83 0.77 0.71 0.67 0.63 0.59 0.56 0.53 0.50
f p(x) (4.10) 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1

if the corresponding Fp(x) is to be maximized.
The construction of (4.9) requires determining only the solution to the problem (4.7)

while the construction of (4.10) requires finding the solution to the problem (4.8). However,
although the construction of (4.9) and (4.10) is more rational from the computational point of
view, the quality of normalized functions (4.9) and (4.10) may not always be acceptable. This
is illustrated by the following example.

Example 4.1. Let us construct the normalization functions (4.5), (4.6), (4.9), and (4.10),
when minx∈L Fp(x) = 10 and maxx∈L Fp(x) = 20. The levels of Fp(x) as well as the values
of different f p(x) are shown in Table 4.1.

The data in Table 4.1 demonstrate that the use of (4.5) and (4.6) provides 0 ≤ f p(x) ≤ 1
and does not change the nature of Fp(x). At the same time, the application of (4.9) and (4.10)
leads to 0.5 ≤ f p(x) ≤ 1. Further, the use of (4.9) does not permit one to retain the essence
of Fp(x).

The use of Boldur’s method (Roy, 1972) supports another way of normalization. In particular,
we can assign “utilities” or “values” u′

p and u′′
p to Fp(x0

p) and Fp(x00
p ), respectively, if Fp(x)

is to be minimized, or to Fp(x00
p ) and Fp(x0

p), respectively, if Fp(x) is to be maximized. Then,
if we accept linear interpolation, it is possible to construct the following aggregation:

�(x) =
q∑

p=1

[
αp Fp(x) + βp

]
(4.11)

where αp and βp can be determined by solving the following system of equations:

⎧
⎨

⎩

αp Fp(x0
p) + βp = u′

p

αp Fp(x00
p ) + βp = u′′

p

(4.12)

if Fp(x) is to be minimized, or solving the system of equations

⎧
⎨

⎩

αp Fp(x00
p ) + βp = u′

p

αp Fp(x0
p) + βp = u′′

p

(4.13)

if Fp(x) is to be maximized.
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It is not difficult to verify that if the “utilities” or “values” u′
p = 1 and u′′

p= 0, the aggregation
(4.11) is reduced to the aggregation described by (4.5).

If we have to differentiate between the importance of different objective functions, it is
possible to transform (4.4) into the form

�(x) =
q∑

p=1

λp f p(x) (4.14)

where λp, p = 1, 2, . . . , q, are weights, weighting factors, or importance factors, whose
values reflect the relative importance of objective functions, which are to satisfy the
following conditions:

λp ≥ 0, p = 1, 2, . . . , q (4.15)

and

q∑

p=1

λp = 1 (4.16)

The maximization of the convolution (4.14) is called the weighting function method (Lu
et al., 2008).

The application of the mappings (4.4) and (4.14), which have found wide practical applica-
tions, corresponds to the principle of uniform optimality (Lyapunov, 1972). At the same time,
the application of aggregations of the type

�(x) =
q∏

p=1

f p(x) (4.17)

as well as

�(x) =
q∏

p=1

λp f p(x) (4.18)

or

�(x) =
q∏

p=1

[ f p(x)]λp (4.19)

which have found some application, corresponds to the principle of just compromise.
The methods based on placing constraints at the level of objective functions are associated

with specifying the desired levels for objective functions defined by the requirements of a DM
(Benayoun et al., 1971) and, then, by maximizing the convolutions, for example, those of the
normalized objective functions (4.14).
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The lexicographic method (Rao, 1996; Ehrgott, 2005) or a method of successive concessions
(Podinovsky and Gavrilov, 1975) can be related to the group of placing constraints on the levels
of objective functions.

In the lexicographic method, the objective functions are ranked in order of importance by a
DM and are numbered according to this ranking. Taking this into account, assume that the most
important objective function is F1(x) while Fq (x) is the least important objective function.
Further, for clarity of presentation, assume that all objective functions are to be minimized.
Then, the original multiobjective problem can be replaced by a set of monocriteria problems.
The first of them takes the following form:

F1(x) → min
x∈L

(4.20)

If x0
1 is the solution to the problem (4.20), then the second problem

F2(x) → min
x∈L

(4.21)

is to be solved by taking into account the following additional constraint:

F1(x0
1 ) + �F1 ≥ F1(x) (4.22)

where �F1 is the concession on F1(x) to minimize F2(x).
If x0

2 is the solution to the problem (4.21) and (4.22), then the concession �F2 is set to
minimize F3(x) and in this way obtain x0

3 . The process of setting the concessions is continued
to obtain x0

4 , x0
5 , . . ., x0

q . Thus, the point x0
p, p = 1, 2, . . . , q, is considered as the solution of

the original multiobjective problem.
The idea of goal programming was first presented by Charnes, Cooper, and Ferguson (1955),

although the actual name first appears in Charnes and Cooper (1961). It was further developed
by Lee (1972), Ignizio (1976), and Romero (1991), among others. An annotated bibliography
on goal programming during the period 1990–2000 is presented in Jones and Tamiz (2002).

The goal programming method requires a DM to set goals for each objective that he/she
wishes to attain. A preferred solution is then defined as the one that minimizes deviations from
the set of goals. Thus, if some goals bp, p = 1, 2, . . . , q, are defined, then the problem of goal
programming can be formulated as follows:

minimize

⎡

⎣
q∑

p=1

(
d−

p + d+
p

)p

⎤

⎦

1
p

, p ≥ 1 (4.23)

subject to

x ∈ L (4.24)

Fp(x) + d−
p − d+

p = bp, p = 1, 2, . . . , q (4.25)

d−
p d+

p = 0, p = 1, 2, . . . , q (4.26)

d−
p , d+

p ≥ 0, p = 1, 2, . . . , q (4.27)
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where bp, p = 1, 2, . . . , q, are the goals set by a DM for objectives (goals can be Fp(x0
p) for

minimized objective functions or Fp(x00
p ) for maximized objective functions) and d−

p and d+
p

are the underachievement and overachievement of the pth goal, respectively. The value of p in
(4.23) is based on the utility function chosen by a DM.

There exists a modification of goal programming, formulated within the framework of the
model (4.23)–(4.27), called priority, pre-emptive, or lexicographic goal programming, when
a DM, in addition to setting goals for objectives, is able to give an ordinal ranking of these
objectives. It is evident that this modification should be used when there is a clear priority
ordering among the goals to be achieved. If a DM is more interested in direct comparisons of
the objectives then weighted goal programming can be used by introducing weights in (4.23).

In reality, it is possible to state that goal programming measures the distance to the goals
by using the sum (the weighted sum) of absolute distances from given goals. Taking this
into account, it is possible to mention the so-called global criteria method (Lai and Hwang,
1996), which differs from goal programming by the measurement of this distance using the
Minkowski metric.

Without a comprehensive discussion of the strengths and weaknesses of the indicated group
of methods (they are studied in detail by, for example, Hwang and Masud, 1979; Zeleny,
1982; Mashunin, 1986; Lai and Hwang, 1996; Ehrgott, 2005), it is necessary to indicate two
fundamental weaknesses shared by all of them.

The first weakness is associated with the ability of methods based on placing constraints
on levels of objective functions and methods of goal programming to produce solutions that
are not Pareto optimal. This violates the basic concept of multicriteria decision-making. The
second weakness is associated with the following considerations.

An important question in multicriteria decision-making is the quality of the solution itself.
It is considered high if the levels of satisfying objectives are equal or close to each other
(giving rise to so-called harmonious solutions) when the importance levels of the objective
functions are equal (Ekel, 2001; Ekel and Galperin, 2003). It is not difficult to extend this
concept for the case when the importance levels of the objective functions are different: the
solutions are to be harmonious by taking into account the corresponding importance factors.
From this point of view, the validity and advisability of the direction related to the principle
of guaranteed results (Lyapunov, 1972) should be recorded. Other directions in multicriteria
decision-making, in particular those indicated above, may lead to solutions with high levels
of satisfaction of some criteria that are reached when assuring low levels of satisfaction of
some other criteria. This situation could be completely unacceptable (for example, Ekel and
Galperin, 2003; Canha et al., 2007; Ekel, Menezes, and Schuffner Neto, 2007).

The lack of clarity on the concept of “optimal solution” arises from the basic method-
ological complexity when solving multicriteria problems. When applying the Bellman–Zadeh
approach to decision-making in a fuzzy environment (Bellman and Zadeh, 1970) to solve
multicriteria problems, this concept is defined with reasonable validity: the maximum degree
of implementing goals serves as a criterion of optimality. This conforms to the principle of
guaranteed results and provides constructive development lines in obtaining harmonious solu-
tions. The Bellman–Zadeh approach helps one to realize an effective (from the computational
standpoint) as well as rigorous (from the standpoint of obtaining solutions x ∈ �P ⊆ L, at
least, for convex �P ) method of analyzing multiobjective models. Finally, its use allows one
to preserve a natural measure of uncertainty in decision-making and take into account the
indices, criteria, and constraints of a qualitative character.
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4.5 Bellman–Zadeh Approach and its Application to Multicriteria
Decision-Making

When applying the Bellman–Zadeh approach to decision-making in a fuzzy environment for
solving multicriteria problems, each objective function Fp(x) can be replaced by a fuzzy
objective function or a fuzzy set Ap. A fuzzy solution D with the setting up of fuzzy sets Ap

is obtained as a result of the intersection D = ∩q
p=1 Ap with a membership function

D(x) = q∧
p=1

Ap(x) = min
p=1,2,...,q

Ap(x), x ∈ L (4.28)

Its use allows us to obtain a solution providing the maximum degree of belongingness to the
fuzzy solution D

max D(x) = max
x∈L

min
p=1,2,...,q

Ap(x) (4.29)

and reduces the problem (4.1) to a search for

x0 = arg max
x∈L

min
p=1,2,...,q

Ap(x) (4.30)

To illustrate the use of (4.28)–(4.30), let us consider the following simple example.

Example 4.2. The membership functions of the three fuzzy objective functions A1(x), A2(x),
and A3(x) are presented in Table 4.2.

Applying (4.28), we construct the fuzzy solution D(x) presented in Table 4.3, which ac-
cording to (4.30) gives rise to the solution x0 = 5.

If we consider multiobjective problems, to obtain (4.30) it is necessary to construct the
membership functions Ap(x), p = 1, 2, . . . , q, reflecting a degree of achieving their “own”
optima by Fp(x), x ∈ L, p = 1, 2, . . . , q. Taking into account the relationships (4.5) and (4.6),
we apply the membership functions

Ap(x) =
⎡

⎣
max
x∈L

Fp(x) − Fp(x)

max
x∈L

Fp(x) − min
x∈L

Fp(x)

⎤

⎦
λp

(4.31)

Table 4.2 Membership functions of fuzzy objective functions

x 1 2 3 4 5 6 7 8 9 10

A1(x) 0.1 0.2 0.8 1.0 0.9 0.7 0.5 0.3 0.2 0.1
A2(x) 0.1 0.2 0.4 0.6 0.8 1.0 0.6 0.3 0.1 0.9
A3(x) 0.4 0.6 1.0 0.9 0.7 0.6 0.5 0.4 0.3 0.2
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Table 4.3 Membership function of a fuzzy solution

x 1 2 3 4 5 6 7 8 9 10

D(x) 0.1 0.2 0.4 0.6 0.7 0.6 0.5 0.3 0.1 0.1

for the minimized objective functions, or the membership functions

Ap(x) =
⎡

⎣
Fp(x) − min

x∈L
Fp(x)

max
x∈L

Fp(x) − min
x∈L

Fp(x)

⎤

⎦
λp

(4.32)

for the maximized objective functions.
Thus, the solution to problem (4.1) requires an analysis of 2q + 1 monocriteria problems

(4.7), (4.8), and (4.29), respectively.
Since the solution x0 has to belong to �P ⊆ L, it is necessary to construct

D̄(x) = q∧
p=1

Ap(x) ∧ P(x) = min

{
min

p=1,2,...,q
Ap(x), P(x)

}
(4.33)

where P(x) =
{

1 if x ∈ �P

0 if x /∈ �P .

The procedures for solving the problem (4.29), discussed in the next section, provide a
way of obtaining x0 ∈ �P ⊆ L according to (4.33). Thus, this says something about the
equivalence of D̄(x) and D(x). This line of thinking helps us to dispense with the need to
implement a cumbersome procedure for building �P ⊆ L.

Finally, the existence of additional conditions (indices, criteria, and/or constraints) of a
qualitative character, defined by linguistic variables, reduces (4.30) to

x0 = arg max
X∈L

min
p=1,2,...,q+s

Ap(x) (4.34)

where Ap(x), x ∈ L, p = q + 1, q + 2, . . . , s, are membership functions of fuzzy values of
linguistic variables, which reflect the nature of these additional conditions.

There is some theoretical justification behind the validity of applying the min operator in
(4.27)–(4.29); see, for example, Bellman and Giertz (1974). Taking this into account, it is
necessary to note that there exist many families of aggregation operators, which may be used
in place of the min operator. Consequently, it is possible to generalize (4.28) as follows:

D(x) = agg(A1(x), A2(x), . . . , Aq (x)), x ∈ L (4.35)

Despite the fact that some properties of these aggregation operators are well established, there
is no clear and intuitively appealing interpretation of these properties. Likewise, there is a
lack of a unifying interpretation of the operators themselves (Beliakov and Warren, 2001). An
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important question emerges: among the many types of aggregation operators, how do we select
the one that is adequate for the particular problem at hand? Although some selection criteria
were suggested in Zimmermann (1996), the majority of investigations is focused on choosing
the operators on the basis of some available experimental evidence. Thus, it is possible to assert
that the selection of the operators, to a significant extent, is experience-based. Considering this,
we discuss below experiments not only showing the use of the min operator, but also involving
the product operator (which can be considered as one of a family of t-norm operators, see
for instance Yager (1988), and which has found a quite visible position in decision-making
problems). Using the product, we reduce (4.28) to the following form:

D(x) =
q∏

p=1

Ap(x) (4.36)

This leads to the expression

max D(x) = max
x∈L

q∏

p=1

Ap(x) (4.37)

from which we obtain

x0 = arg max
x∈L

q∏

p=1

Ap(x) (4.38)

4.6 Multicriteria Resource Allocation

The problem of multicriteria allocation of resources or their shortages (these problems are
equivalent from the mathematical and conceptual points of view) among consumers (depart-
ments, regions, projects, etc.) brings about the possibility to use diverse types of objective
functions (linear, fractional, quadratic, etc., Ekel et al., 1998) in the optimization problem
expressed by (4.1) and defined in a feasible region

L =
{

x ∈ Rn |0 ≤ xi ≤ Bi ,

n∑

i=1

xi = B

}
(4.39)

where x = [ x1 x2 . . . xn ] is a vector of limitations (for the sake of our considerations) for
consumers, Bi is a permissible value of limitation for the ith consumer, while B is a total value
of limitations for all consumers considered in this planning or control problem.

To describe a general scheme for solving the problem formalized by the model (4.1) and
(4.39), it is advisable to introduce a linguistic variable Q – limitation for consumer to provide
a DM with the possibility of considering conditions that are difficult to formalize. Thus, the
general scheme assumes the availability of a procedure for building a term set T (Q) of the
linguistic variable and membership functions for its fuzzy values. In addition, if the solution x0

α

with the values Ap(x0
α), p = 1, 2, . . . , q, is not satisfactory, a DM has to have the possibility
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to correct it, passing to x0
α+1 by changing the importance of one or more objective functions.

Thus, in the general scheme we also assume the availability of the procedure for constructing
and correcting a vector of importance factors � = [ λ1 λ2 . . . λn ].

The general scheme for solving the problem described by (4.1) and (4.39), which has
been used for implementing an adaptive interactive decision-making system (AIDMS1) (to be
described in the next section) is associated with the following sequence of steps:

1. Solution of the problems (4.7) and (4.8) in order to obtain x0
p, p = 1, 2, . . . , q, and x00

p ,
p = 1, 2, . . . , q, respectively.

2. Construction of the membership functions expressed by (4.31) or (4.32).
3. Construction of an initial vector of the importance factors � = [ λ1 λ2 . . . λn ].
4. Analysis of the availability of initial conditions defined by the linguistic variable. If these

conditions are not available, then go to Step 8; otherwise, go to Step 5.
5. Verification of compatibility of the initial conditions and, if necessary, their correction.
6. Solving the problem (4.29) with the goal to obtain x0

α defined by (4.34).
7. Analysis of the current solution x0

α . If a DM is satisfied with this solution, then go to Step
10; otherwise, go to Step 8, taking α := α + 1.

8. Correction of the vector of the importance factors.
9. Insertion of additional conditions defined by the linguistic variables; then go to Step 5.

10. Completion of computing – the solution x0 has been obtained.

The main functions of the calculating kernel of the AIDMS1 are associated with obtaining x0
p,

p = 1, 2, . . . , q, and x00
p , p = 1, 2, . . . , q, which are produced by solving the problems (4.7)

and (4.8) and by obtaining x0 according to (4.34). The solution of (4.7) and (4.8) is rather
straightforward. The maximization of (4.28) can be based on a nonlocal search that comes as
a modification of the Gelfand and Tsetlin “long valley” method (Raskin, 1976).

Experimental evidence shows that variables in (4.28) can be divided into inessential and
essential ones. The change of inessential variables leads to essential variations of (4.28). The
change of essential variables leads to inessential variations of (4.28). Thus, a structure of (4.28)
may be considered as a multidimensional “long valley”. If we use direct search methods (Rao,
1996), this circumstance requires the ascent from different initial points x0

p (Pareto points), if
we minimize Fp(x), or x00

p (Pareto points), if we maximize Fp(x), to find the most convincing
solution x0. This explains the use of a nonlocal search. The procedure for this search can be
outlined as follows:

1. The sequence {x (l)}, l = 1, 2, . . . , q, is built by starting from points x0
p, if we minimize

Fp(x), or x00
p , if we maximize Fp(x), obtained as a result of execution of Step 1 of the

general scheme. This sequence satisfies the property min
1≤p≤q

Ap(x (l)) ≥ min
1≤p≤q

Ap(x (l+1)),

l = 1, 2, . . . , q − 1.
2. The local search for x0 is carried out from x (1)(l = 1). As a result of this search, we obtain

a point x (1)0 with the corresponding Ap(x (1)0), p = 1, 2, . . . , q.
3. The local search for x0 is carried out starting from x (l+1). As a result, we obtain a point

x (l+1)0 with the corresponding Ap(x (l+1)0), p = 1, 2, . . . , q.
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x (1)

x1
(t, t +1)

x2
(t, t +2)

x3
(t, t +1)0x(t +2)0

x(1)0 =x(1)0

x(l +1)0 =x(t +1)0

x(l +1)

Figure 4.1 Nonlocal search for x0.

4. The following examination is executed:
(a) if x (1)0 �= x (l+1)0, then go to Operation 5;
(b) if x (1)0 = x (l+1)0 for l �= q − 1, then go to Operation 3, by incrementing l := l + 1;
(c) if x (1)0 = x (l+1)0 = x (q)0, then go to Operation 8, by setting x0 = x (1)0.

5. A line between points x (t)0 and x (t+1)0 is formed to generate points x (t,t+1)
s , s = 1, 2, 3 (see

Figure 4.1). Among them (if they are acceptable from the point of view of the constraints
(4.39)), a point x (t,t+1)0 = arg maxt min1≤p≤q Ap(x (t,t+1)

s ) is selected to define a direction
for future search.

6. The next local search for x0 is carried out starting from x (t,t+1)0. As a result of this search,
we obtain a point x (t+2)0 (see Figure 4.1).

7. We execute the analysis: if three “last” points x (t)0, x (t+1)0, and x (t+2)0 differ on
min1≤p≤q Ap(x (t)0), min1≤p≤q Ap(x (t+1)0), and min1≤p≤q Ap(x (t+2)0) less than the de-
sired accuracy level, then go to Operation 8, taking x0 = arg max[min1≤p≤q Ap(x (t+2)),
minmin1≤p≤q Ap(x (t+2)), min1≤p≤q Ap(x (t+2))], otherwise go to Operation 5, taking x (t)0 :=
x (t,t+1)0 and x (t+1)0 := x (t+2)0.

8. Calculations are completed and the solution x0 ∈ �P ⊆ L has been obtained.

The computing realized in Operations 2, 3, and 6 of the algorithm is possible by making
use of any search method (in particular, within the framework of the AIDMS1, we used a
modification of the univariate method; Rao, 1996). If x (m) is a current point, the transition to
x (m+1) is expedient if

(∀p = 1, 2, . . . , q):Ap(x (m+1)) ≥ min
1≤p≤q

Ap(x (m)) (4.40)
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In contrast, if

(∃p = 1, 2, . . . , q):Ap(x (m+1)) < min
1≤p≤q

Ap(x (m)) (4.41)

the transition to x (m+1) is not expedient from the point of view of maximizing (4.28). This
way of evaluating the expediency of the transition to the next point x (m+1) leads to the solution
(4.30) that is Pareto, if all inexpedient transitions are rejected.

The AIDMS1 includes a procedure for constructing and correcting the term set T (Q) and
membership functions for fuzzy values of the linguistic variable Q – Limitation for consumer.
The initial term set available for a DM comes in the form T (Q) = 〈near, approximately,
slightly less, considerably less, slightly more, and considerably more〉. The corresponding
membership functions are defined in the form

Ap(xi ) = exp[ − k(Ri − xi )
2] (4.42)

Ap(xi ) =
{

1 − exp[−k(Ri − xi )2] xi ≤ Ri

0 xi > Ri
(4.43)

Ap(xi ) =
{

1 − exp [ − k(Ri − xi )2] xi ≥ Ri

0 xi < Ri
(4.44)

where k is a coefficient defined by the given accuracy of solution; Ri is a “specific value”

which is related to the condition (for example, considerably less than Ri ) that is to be taken
into account.

The membership function described by (4.42) corresponds to the terms near and ap-
proximately, (4.43) to slightly less and considerably less, and (4.44) to slightly more and
considerably more.

Furthermore, the AIDMS1 includes several procedures for forming and correcting the
vector � = [ λ1 λ2 . . . λn ] of importance factors. One of them is based on Saaty’s pairwise
comparison approach (Saaty, 1980) as discussed in Chapter 3.

4.7 Adaptive Interactive Decision-Making System for Multicriteria
Resource Allocation

The AIDMS1 is used for solving the problem (4.1) and (4.39) for the case of linear objective
functions. It has been developed in the C++ programming language. The software is run in a
graphical environment of the Microsoft Windows operating system. Below, we present several
typical windows that appear in the process of initial data preparation as well as a few windows
that appear in the process of multicriteria resource shortage allocation.

An initial window (see Figure 4.2) is used to invoke the system by clicking on the Database
option.

The Database window, Figure 4.3, is used to load information available in the database
(by clicking on the Load button) or for preparing and storing input information (by clicking
on the Save button). In the second case, Number of Functions (q), Number of Variables
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Figure 4.2 Initial window.

Figure 4.3 Database interface.
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Figure 4.4 Importance factors interface.

(n), Initial Function Information (cpi , p = 1, 2, . . . , q, i = 1, 2, . . . , n), Variable Limitations
(Bi , i = 1, 2, . . . , n), and Limitation (B) are defined. Further, the variable increment (DX )
and the desired accuracy (Err) are defined as well. The screenshot given in Figure 4.3 shows
the input required in the example of multicriteria resource shortage allocation.

By clicking on the Importance Factors button (see Figure 4.4), one constructs or corrects the
vector of importance factors by indicating which of two goals is more important and estimating
the corresponding distinction degree using the rank scale given in Chapter 3. As an example,
Figure 4.4 reflects a situation where the second objective function is more important then the
third one with the rank characterized as Weak Superiority.

By clicking on the option of Linguistic variable (see again Figure 4.3), it is possible to
consider the linguistic variable Q – Limitation for consumer. Figure 4.5 shows the use of
the fuzzy value slightly less with respect to the magnitude 12 000.00 for the Limitation for
consumer 1.

The solution to the problem of multicriteria resource shortage allocation presented in the
Database window (see Figure 4.3), when using the min operator, is visualized in Figure 4.6.
The solution to the same problem obtained with the use of the product operator is shown in
Figure 4.7.

4.8 Application of the Bellman–Zadeh Approach to
Multicriteria Problems

In this section, we concentrate on the use of the Bellman–Zadeh approach to decision-making
in a fuzzy environment to solve several essential power engineering problems such as:

� multiobjective power and energy shortage allocation as applied to load management;
� multicriteria power system operation to realize dispatch on several objectives;
� multicriteria optimization of network configuration in distribution systems;
� energetically effective (bicriteria) voltage control in distribution systems.
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Figure 4.5 Linguistic variables interface.

Figure 4.6 Execution interface when applying the min operator.
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Figure 4.7 Execution interface when applying the product operator.

Example 4.3. The conceptions of load management in power systems and subsystems (Taluk-
dar and Gellings, 1987; Prakhovnik, Ekel, and Bondarenko, 1994) are united by the following.
The elaboration of control actions is performed on a two-stage basis. At the level of energy
control centers, optimization of allocating power and energy shortages (natural, associated
with inadequate installed power of generating sources and/or deficiency of primary energy,
or with the economic advisability of load management) is carried out at different levels of
territorial, temporal, and situational hierarchies of planning and operation. This allows one to
draw up tasks for consumers. At the consumer level, control actions are realized in accordance
with these tasks.

Thus, the problems of power and energy shortage allocation are of fundamental importance
in the family of load management problems. They are to be analyzed not only as technical
and economical tasks, but as possessing a social and ecological nature as well. In addition,
when solving them, it is necessary to account for considerations related to forming incentives
to consumers. Consequently, it should be pointed out that methods based on the fundamental
principles of resource allocation exhibit drawbacks (Ekel et al., 2000). These can be overcome
by casting the problems within the framework of multicriteria models. This helps us to consider
and minimize diverse implications of power and energy shortage allocation and to create
incentives for consumers. The application of the multicriteria approach to load management
is also beneficial in providing a new look at the problems of planning and the operation of
electricity markets (Stoft, 2002). In particular, all market participants aspire to maximize their
benefits (economical, technological, social, political, etc.). The goals of market participants, as
a rule, come into conflict, which may be resolved by searching for a corresponding compromise.
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Its objective is the formation of mutually advantageous and harmonious relations between the
market participants.

The substantial analysis of problems of power and energy shortage allocation, systems
of economic management, including taxation policy, as well as readily available reported
information, has led to the construction of a general set of goals to solve these problems in
a multicriteria statement. The complete list includes 17 types of goals, some of which are
given below:

1. Primary limitation of consumers with a lower cost of production or given
services on consumed 1 kWh of energy (achievement of a minimal drop in total
production and/or given services).

15. Primary limitation of consumers with a lower value of the demand coefficient
(primary limitation of consumers with greater possibilities of production outside
of the peak time).

16. Primary limitation of consumers with a lower duration of using maximum
load in 24 hours (primary limitation of consumers with greater possibilities in
transferring maximum load in the daily interval).

17. Primary limitation of consumers with a lower duration of using maximum load
in month (quarter, year) (primary limitation of consumers with greater possibilities
in transferring maximum load in the month (quarter, year) interval).

The general set of goals is sufficiently complete because it is directed at decreasing diverse
negative consequences for consumers and creating incentives for them. This set of goals
is universal because it can serve as the basis for building models at different levels of the
load management hierarchy by aggregating information and posterior decomposition of the
problems in accordance with different indices. The corresponding list of goals can be defined
for every case by a DM, who can be an individual or a group (for example, the DM may be
the leading organizations of a country or state, a council of directors of enterprises, and so
on, whose decision regarding the list of goals can be considered as the legislative one at the
corresponding level)

Consider the solution to the problems of power shortage allocation formalized within
the framework of the model (4.1) and (4.39) for six consumers for B1 = 40 000 kW and
B2= 60 000 kW when using the min operator. For comparison, we also use the product
operator as well as Boldur’s method considered in Section 4.4. The goals listed above are
taken into consideration and described by the linear objective functions

Fp1(x) =
6∑

i=1

cpi xi , p = 1, 15, 16, 17 (4.45)

that are to be minimized. Here xi , i = 1, 2, . . . , 6, are limitations of power supply for con-
sumers. The coefficients cpi , p = 1, 15, 16,17, i = 1, 2, . . . , 6, are determined by specific
characteristics of consumers. Table 4.4 provides the initial information for B1 = 40 000 kW
as well as for B2 = 60 000 kW. This information corresponds to input information given in
Figure 4.3.
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Table 4.4 Initial information

I 1 2 3 4 5 6

c1,i , monetary units (kWh) 1.65 3.24 1.47 2.22 1.12 2.13
c15,i 0.53 0.33 0.23 0.19 0.22 0.27
c16,i (h) 18.64 19.87 21.96 14.99 17.72 22.40
c17,i (h) 5400 6800 6200 5600 4900 7000
Ai (kW) 16 000 5000 4000 5000 23 000 14 000

The obtained results for the min operator (x0), product operator (x00) as well as Boldur’s
method (x000) are presented in Table 4.5 and Table 4.6. The solutions obtained when using the
min and product operators for B1 = 40 000 kW are also presented in Figures 4.6 and 4.7.

To reflect the quality of solutions obtained on the basis of different approaches, Table 4.7
includes the mean magnitudes of absolute values �(x) of deviations of membership function
levels (satisfaction levels) Ap(x) from their mean values Â p(x) which are calculated as follows:

�(x) = 1

4

4∑

i=1

∣∣Ap(x) − Â p(x)
∣∣ (4.46)

where

Â p(x) = 1

4

4∑

i=1

Ap(x) (4.47)

The results shown in Table 4.7 demonstrate that x0 � x00 and x0 � x000. The
high quality of the solutions x0 is also confirmed by inequalities minp Ap(x0) >

minp Ap(x00) and minp Ap(x0) > minp Ap(x000), which are observed for both cases. This
confirms the validity of the use of the principle of guaranteed results based on applying the
min operator with the most noncompensatory behavior (Yager, 1988).

To show the possibility of correcting solutions as a result of changing the importance
of the objective functions, let us assume, for example, that the second objective function
(p = 15) has the level “weak superiority” relative to other objective functions (note that
other objective functions have the level “identical significance” relative to each other). These

Table 4.5 Power shortage allocation

I 1 2 3 4 5 6

x1,0 4476.68 1406.90 4000.00 5000.00 23 000.00 2116.00
x1,00 8000.00 0 4000.00 5000.00 23 000.00 0
x1,000 8000.00 0 4000.00 5000.00 23 000.00 0
x2,0 12 868.07 2763.63 4000.00 5000.00 23 000.00 12 368.30
x2,00 15 510.77 0 4000.00 5000.00 23 000.00 12 489.23
x2,000 16 000.00 0 4000.00 5000.00 23 000.00 12 000.00
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Table 4.6 Levels of membership functions

P 1 15 16 17

Ap(x1,0) 0.799 0.791 0.792 0.792
Ap(x1,00) 0.906 0.651 0.880 0.911
Ap(x1,000) 0.906 0.651 0.880 0.911
Ap(x2,0) 0.629 0.624 0.624 0.629
Ap(x2,00) 0.968 0.400 0.688 0.879
Ap(x2,000) 0.986 0.446 0.727 0.932

pairwise comparisons lead to the results λ1 = 0.67, λ2 = 2.00, λ3 = 0.67, and λ4 = 0.67.
The corresponding solution for B1 = 40 000 kW is x1,0

1 = 2196.11 kW, x1,0
2 = 1262.74 kW,

x1,0
3 = 4000.00 kW, x1,0

4 = 5000.00 kW, x1,0
5 = 23 000.00 kW, and x1,0

6 = 4541.15 kW with
A2(x1,0) = 0.944 and A1(x1,0) = 0.675, A3(x1,0) = 0.602, and A4(x1,0) = 0.599. It is possible
to increase (to a higher extent) the importance of the second objective function (p = 15)
by utilizing, for example, the level “Evident Significance” relative to other objective func-
tions. In this case, we obtain λ1 = 0.40, λ2 = 2.80, λ3 = 0.40, and λ4 = 0.40, and the
solution is x1,0

1 = 1036.58 kW, x1,0
2 = 1079.98 kW, x1,0

3 = 4000.00 kW, x1,0
4 = 5000.00 kW,

x1,0
5 = 23 000.00 kW, and x1,0

6 = 5883.44 kW, with A2(x1,0) = 0.980 and A1(x1,0) = 0.499,
A3(x1,0) = 0.364, A4(x1,0) = 0.364.

Let us consider the influence of the linguistic variable Q – Limitation for consumer. For
example, the introduction of the condition “considerably less than 5000 kW” for the fourth
consumer leads to a change of the solution shown in Table 4.5 as follows: x1,0

4 = 1936.10 kW
and x1,0

1 = 5313.92 kW, x1,0
2 = 3312.00 kW, x1,0

3 = 4000.00 kW, x1,0
5 = 23 000.00 kW,

x1,0
6 = 1999.98 kW. At the same time, the introduction of the condition “slightly less than

5000 kW” for the fourth consumer leads to a change of the solution given in Table 4.5 as
follows: x1,0

4 = 3257.52 kW and x1,0
1 = 4888.11 kW, x1,0

2 = 3750.00 kW, x1,0
3 = 4000.00 kW,

x1,0
5 = 23 000.00 kW, x1,0

6 = 1104.57 kW.

Example 4.4. The use of the results described above stipulates that we can apply the multicri-
teria approach to power system operation to realize dispatch with several objectives involved
(say, minimum fuel cost, minimum losses, maximum degree of security, minimum environ-
mental impact, etc.). This is illustrated by a case study of the standard IEEE 30-bus system
presented in Figure 4.8 (bus 1 is a slack bus) when considering the objectives of minimizing
losses L(x), reducing sulfur oxide emissions ESOx (x), and reducing nitrogen oxide emissions
EN Ox (x).

Table 4.7 Mean deviations

� B1 B2

�(x0) 0.003 0.003
�(x00) 0.093 0.195
�(x000) 0.093 0.186
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Figure 4.8 System diagram.

The details of the characteristics of the generators are listed in Table 4.8. It includes the
coefficients (Nimura et al., 2001) for estimating levels of SOx and NOx emissions on the basis
of the following relationships:

ESOx,i(xi ) = aSOx,ix
2
i + bSOx,ixi + cSOx,i (4.48)

and

ENOx,i(xi ) = aNOx,ix
2
i + bNOx,ix + cNOx,i (4.49)

The initial state is the following: x (0)
1 = 85.50 MW, x (0)

2 = 66.92 MW, x (0)
3 = 66.76 MW,

x (0)
4 = 58.91 MW, and x (0)

5 = 48.67 MW, with L(x (0)) = 9.04 MW, ESOx (x (0)) = 220.72 kg/h,
and EN Ox (x (0)) = 284.52 kg/h.

Consideration of (4.48) and (4.49) creates no difficulties at all. At the same time, the presen-
tation of the function L(x) in an explicit form gives rise to some difficulties. One way around
this problem is the application of the procedures for sequential multicriteria optimization
using sensitivity models reflecting the loss change occurring at each optimization step.

Table 4.8 Generator characteristics

i x1 x2 x3 x4 x5

Bus 2 5 8 11 13
Fuel Hydro Gas Oil Coal Hydro
aSOx,i 0 0 0.010 0.015 0
bSOx,i 0 0 0.800 1.200 0
aNOx,i 0 0.010 0.015 0.030 0
bNOx,i 0 0.200 0.300 0.600 0



P1: OTA/XYZ P2: ABC
c04 JWST012-Pedrycz September 21, 2010 9:10 Printer Name: Yet to Come

Continuous Models of Multicriteria Decision-Making and their Analysis 127

Table 4.9 Results obtained in successive steps of multicriteria optimization

Step x (m)
1 x (m)

2 x (m)
3 x (m)

4 x (m)
5

0 85.50 66.92 66.76 58.91 48.67
1 85.86 70.26 67.25 56.67 46.71
2 84.34 73.78 66.36 53.91 48.38
3 82.44 77.47 65.20 51.31 50.35
4 83.56 81.35 64.94 48.74 48.18

It is legitimate to construct the sensitivity models (Ekel et al., 2002) on the basis of
experimental design techniques (Box, Hunter, and Hunter, 1978; Jain, 1991). In particular, by
varying the generation magnitudes for the initial state at levels x (0)

i − δx (0)
i and x (0)

i + δx (0)
i ,

i = 1, 2, . . . , 5, and applying 25−2 fractional design (Box, Hunter, and Hunter, 1978; Jain,
1991), we construct the sensitivity model in the following form:

L̄(x (0)) = 0x1 − 0.0814x2 − 0.0494x3 − 0.0475x4 + 0x5 (4.50)

The linearized objective function (4.50) has been constructed for δ = 0.05.
In the general case, the linearized objective function

L̄(x (m)) = c(m)
1 x1 + c(m)

2 x2 + c(m)
3 x3 + c(m)

4 x4 + c(m)
5 x5 (4.51)

together with the objective functions (4.48) and (4.49) and the constraints for generators

max{0,x (m)
i − δx (m)

i } ≤ xi ≤ min{x (m)
i + δx (m)

i , xmax
i }, i = 1, 2, . . . , 5 (4.52)

form the multicriteria problem for the mth step.
Table 4.9 and Table 4.10 include the results produced at successive steps of the sequential

multicriteria optimization. Table 4.11 contains the values of the coefficients of the linearized
function L̄(x (m)) obtained in successive steps.

Example 4.5. The problems of optimizing network configuration (network reconfiguration)
in distribution systems are associated with altering the topologies of the distribution systems
by changing the state of their switches (in other words, by changing the locations of their
disconnections). These problems are solved in long- and short-term planning and operation,

Table 4.10 Levels of objective functions

Step L(x (m)) ESOx (x (m)) EN Ox (x (m))

0 9.04 220.72 284.52
1 8.91 215.23 281.81
2 8.78 205.41 274.69
3 8.60 195.73 268.60
4 8.55 188.25 265.70
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Table 4.11 Coefficients of the linearized function L̄(x (m))

Step c(m)
1 c(m)

2 c(m)
3 c(m)

4 c(m)
5

0 0 −0.0814 −0.0494 −0.0475 0
1 0 −0.0801 −0.0494 −0.0481 −0.0326
2 0 −0.0786 −0.0497 −0.0482 −0.0310
3 0 −0.0765 −0.0502 −0.0492 0
4 0 −0.0756 −0.0508 −0.0492 0

and can be applied to design studies. The increased interest in them is associated with the wide
automation of distribution systems whose switches are remotely monitored and controlled. This
makes it possible to solve them online in real time. Many studies, using different approaches,
have focused on developing solutions to these problems on the basis of diverse approaches. At
the same time, the majority of existing studies are focused on solving monocriteria problems
(usually, power losses or energy losses are minimized). Further, network reconfiguration
problems are inherently multicriteria in nature because they have an impact on reliability,
service quality, and economical feasibility of power supply.

Taking the above observations into account, the developed computing system, named DNOS,
designed to deal with multicriteria optimization of network configuration in distribution sys-
tems, is useful for considering and minimizing the objective functions of power losses, energy
losses, the system average interruption frequency index (SAIFI) (IEEE, 2004), the system av-
erage interruption duration index (SAIDI) (IEEE, 2004), undersupply of energy, poor energy
quality consumption (consumption of energy outside of permissible limits), and integrated
overload of network elements in diverse combinations.

The solutions to monocriteria as well as multicriteria problems of optimizing the network
configuration are based on the use of the univariate method (Rao, 1996) and its modifications,
which are flexible and easily adaptable to different practical solution strategies as well as to
the technology of representing information on a network topology. It is worth noting that the
solution to the multicriteria problems is associated with analyzing the conditions (4.40) and
(4.41) at each optimization step to make a decision on the transition from solution x (m) to
solution x (m+1).

Let us consider the results coming from solving a simple problem of optimizing the con-
figuration of a 13.8 kV network which includes 77 buses and 87 branches. As the minimized
objective functions, power losses �P , energy losses �W , and poor energy consumption �N
have been considered.

The results of monocriteria optimization on �P , �W , and �N are presented in Table 4.12,
Table 4.13, and Table 4.14, respectively. Table 4.15 contains the results of the multicriteria
optimization. To better understand the advantages of applying the multicriteria approach,
Table 4.16 shows comparative results of the monocriteria and multicriteria optimization. These
results show that the application of the multicriteria approach leads to a harmonious solution
with small deviations from locally optimal solutions obtained for each criterion. This point
is confirmed by considering the results (see Table 4.17) of solving other simple problems of
monocriteria and multicriteria optimizing configurations of a 13.8 kV network, which includes
24 buses and 29 branches, on the objective functions of SAIFI, SAIDI, and undersupply energy
�E , which reflect power supply reliability.



P1: OTA/XYZ P2: ABC
c04 JWST012-Pedrycz September 21, 2010 9:10 Printer Name: Yet to Come

Continuous Models of Multicriteria Decision-Making and their Analysis 129

Table 4.12 Levels of objective functions (monocriteria optimization on �P)

Objective function Initial state Optimal state Objective function reduction (%)

�P (kW) 99.15 64.10 35.35
�W ( kWh) 1191.32 849.09 28.73
�N (kWh) 502.42 1086.09 –116.17

Table 4.13 Levels of objective functions (monocriteria optimization on �W )

Objective function Initial state Optimal state Objective function reduction (%)

�P (kW) 99.15 64.56 34.89
�W (kWh) 1191.32 835.49 29.87
�N (kWh) 502.42 349.97 30.34

Table 4.14 Levels of objective functions (monocriteria optimization on �N )

Objective function Initial state Optimal state Objective function reduction (%)

�P (kW) 99.15 84.88 14.39
�W (kWh) 1191.32 1146.49 3.76
�N (kWh) 502.42 145.92 70.96

Table 4.15 Levels of objective functions (multicriteria optimization)

Objective function Initial state Optimal state Objective function reduction (%)

�P (kW) 99.15 66.98 32.45
�W (kWh) 1191.32 854.66 28.26
�N (kWh) 502.42 188.28 52.53

Table 4.16 Levels of objective functions (monocriteria and multicriteria optimization)

Objective function
Optimization

on �P
Optimization

on �W
Optimization

on �N
Multicriteria
optimization

�P (kW) 64.10 64.56 84.88 66.98
�W (kWh) 849.09 835.48 1146.49 854.66
�N (kWh) 1086.09 349.97 145.92 188.28

Table 4.17 Levels of objective functions (monocriteria and multicriteria optimization)

Objective function
Initial
state

Optimization
on SAIFI

Optimization
on SAIDI

Optimization
on �E

Multicriteria
optimization

SAIFI (interruptions/year) 18.59 14.02 14.62 17.89 14.47
SAIDI (hours/year) 45.00 51.77 25.73 40.01 31.18
�E (kWh) 771.79 636.11 576.34 382.43 506.85
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Example 4.6. The problem of optimizing modes for the operation of basic means of volt-
age control in distribution systems is associated with choosing off-load taps for distribution
transformers and conditions for operating tap changing under load transformers or voltage
regulators at feeding substations. The techniques for optimizing voltage control implemented
within the framework of the developed computing system, named VCOS, are directed at min-
imizing poor energy quality consumption on the basis of applying a synthesis of the integral
criteria of voltage quality and calculations of permissible voltage levels.

In particular, the energy-weighted average voltage drops from buses at feeding substations
to the centers of loads of low-voltage networks of distribution transformers are used to choose
their off-load taps.

The choice of conditions for operating tap changing under load transformers at feeding
substations is considered as a stage that follows the choice of off-load taps for the distribution
transformer. However, if it is impossible to change the off-load taps, this stage is considered
as independent.

The optimal conditions for operating tap changing under load transformers at a feeding
substation may be obtained if it is possible to provide the voltage addition at the bus of this
substation that is equal in magnitude and opposite in sign to the power-weighted voltage
levels at the centers of loads of low-voltage networks of all distribution transformers for
each step of loads curves. Thus, it is possible to construct a relationship Eω = fE (ω) where
ω = 1, 2, . . . , � is a step of load curves.

Some regulation laws can be considered, say (1) voltage stabilization (ES = aS), (2) voltage
control with current correction (EI = aI + bI I ), and (3) voltage control with active power
correction (EP = aP + bP P).

Knowing, for example, the active load curve for tap changing under a load transformer at
a feeding substation Pω = fP (ω), ω = 1, 2, . . . , �, and Eω = fE (ω), ω = 1, 2, . . . , �, and
eliminating the parameter ω, we obtain a set of points in the system of coordinates P − Eω. By
applying the method of least squares to this set of points, the regulation law EP = aP + bP P
can be constructed.

The approach described above serves for minimizing poor energy quality consumption.
However, in accordance with a situational hierarchy, the need can arise for energetically
effective voltage control, considering the static load characteristics (in particular, the results
of De Steese, Merrick, and Kennedy (1990) demonstrate the possibility of essentially
reducing peak load and energy consumption as a result of reducing the voltage). Thus,
it is beneficial to look at the second problem statement dealing with the minimization of
poor energy quality consumption and reducing peak load and/or energy consumption. Its
solution is one of the functions of the VCOS system implemented on the basis of the results
described above.

Let us consider the results obtained when solving the problem of optimizing voltage control
in a 13.8 kV network which includes 6 feeders with 2629 distribution transformers. The
voltage control EP and a reducing peak load consumption law EC

P are presented in Figure
4.9. In this example, where the criteria have equal significance, the peak load is reduced by
6.68%; however, poor energy quality consumption is increased by 24.8%. Figure 4.10 presents
the solution where the importance of the criterion of poor energy quality consumption has
Absolute Superiority in relation to reducing peak load consumption. The EC

P law of Figure 4.10
leads to a reduction of peak load by 2.8% and an increase in poor energy quality consumption
by 6.5%.
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Figure 4.9 Voltage control laws with identical levels of significance of criteria.

Figure 4.10 Voltage control laws with different levels of significance of criteria.
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Table 4.18 Levels of objective functions

Alternative �W �E �N

x1 10 241 × 103 312 × 103 1027 × 103

x2 11 635 × 103 300 × 103 1234 × 103

x3 10 210 × 103 314 × 103 1116 × 103

x4 10 284 × 103 316 × 103 1211 × 103

x5 11 243 × 103 324 × 103 1190 × 103

x6 10 493 × 103 331 × 103 1017 × 103

x7 10 233 × 103 318 × 103 1098 × 103

4.9 Conclusions

We have concentrated on the analysis of continuous problems of multicriteria decision-making
(multiobjective decision-making). The main concepts of multiobjective decision-making as
well as the main approaches to their solutions have been studied. Much attention has been paid
to the application of the Bellman–Zadeh approach to decision-making in a fuzzy environment
to analyze multiobjective problems. In its use the concept of “optimal solution” is defined with
reasonable validity: here the maximum degree of satisfying all objectives serves as a criterion
of optimality. This conforms to the principle of guaranteed results and provides a constructive
way to obtain harmonious solutions on the basis of analyzing associated max–min models.
The application of the presented results has been illustrated through practical examples arising
in the realm of power engineering.

Exercises

Problem 4.1. The characterization of seven alternatives for choosing a power supply scheme
is given in Table 4.18. The comparison of alternatives is to be carried out on the basis of the
following objective functions: energy losses �W , undersupply energy �E , and poor energy
consumption �N .
Demonstrate the possibility of reducing the number of alternatives on the basis of the notion
of the Pareto-optimal solution.

Problem 4.2. Solve the following problem of multiobjective optimization:

F1(x) = 3x1 + 13x2 → min

F2(x) = 8x1 + 6x2 → min

F3(x) = 4x1 + 5x2 → min

subject to the constraints

0 ≤ x1 ≤ 20

0 ≤ x2 ≤ 10

x1 + x2 = 20
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Apply the convolution (4.4) where the normalization of the objective function is realized on
the basis of (4.5).

Problem 4.3. Solve the problem presented in Problem 4.2 by applying Boldur’s method.

Problem 4.4. Solve the same problem (Problem 4.2) by applying the method based on placing
constraint levels of objective functions to improve the quality of the solution (so that we can
obtain a more harmonious solution).

Problem 4.5. Consider the problem (Borisov, Krumberg, and Fedorov, 1990) of selecting a
manager for an enterprise. There are five candidates for this position. They are evaluated on
the basis of the following indicators: professional skills (C1), organizational capabilities (C2),
work experience (C3), authority (C4), ability to work with people (C5), and age (C6). The
results of evaluating the candidates are as follows:

C1 = {0.9/x1, 0.9/x2, 0.6/x3, 0.8/x4, 0.5/x5}
C2 = {0.8/x1, 0.9/x2, 0.5/x3, 0.7/x4, 0.6/x5}
C3 = {0.7/x1, 0.9/x2, 0.8/x3, 0.5/x4, 0.3/x5}
C4 = {0.9/x1, 0.8/x2, 0.5/x3, 0.6/x4, 0.5/x5}
C5 = {0.9/x1, 0.9/x2, 0.4/x3, 0.7/x4, 0.6/x5}
C6 = {0.9/x1, 0.4/x2, 0.8/x3, 0.7/x4, 0.5/x5}

Try to select the best candidate assuming that all indicators are of the same importance.

Problem 4.6. Consider the problem (Borisov, Krumberg, and Fedorov, 1990) of selecting a
location for a building of an enterprise. There are four alternatives. They are evaluated on the
basis of the following indicators: proximity to a consumer (C1), proximity to sources of raw
materials (C2), and availability of labor force (C3). The results of evaluating the alternatives
are as follows:

C1 = {0.5/x1, 0.7/x2, 0.3/x3, 0.6/x4}
C2 = {0.5/x1, 0.4/x2, 0.8/x3, 0.4/x4}
C3 = {0.2/x1, 0.1/x2, 0.6/x3, 0.9/x4}

Apply the Bellman–Zadeh approach for the two cases:

(a) the first two indicators have identical importance and are two times more important than
the third criterion;

(b) the first indicator is two times more important than the last two indicators which have
identical importance.
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Problem 4.7. Solve the following problem of multiobjective optimization:

F1(x) = 5x1 + 9x2 → min

F2(x) = 8x1 + 3x2 → min

subject to the constraints

x1 + x2 = 10

x1, x2 ≥ 0

Apply the Bellman–Zadeh approach and consider two scenarios:

(a) the objective functions have identical importance;
(b) the first objective function is two times more important than the second objective function.

Problem 4.8. Solve the following problem of multiobjective optimization:

F1(x) = 4x1 + 9x2 → min

F2(x) = 3x1 + 6x2 → max

subject to the constraints

x1 + x2 = 10

x1, x2 ≥ 0

Apply the Bellman–Zadeh approach and study two cases:

(a) the objective functions have identical importance;
(b) the first objective function is two times less important than the second objective function.
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Pareto, V. (1886) Cours d’économie politique, Lousanne Rouge, Lousanne.
Podinovsky, V.V. and Gavrilov, V.M. (1975) Optimization on Sequentially Utilized Criteria, Sovetskoe Radio, Moscow

(in Russian).
Prakhovnik, A.V., Ekel, P.Ya., and Bondarenko, A.F. (1994) Models and Methods of Optimizing and Controlling

Modes of Operation of Electric Power Supply Systems, ISDO, Kiev (in Ukrainian).
Rao, S. (1996) Engineering Optimization, John Wiley & Sons, Inc., New York.
Raskin, L.G. (1976) Analysis of Complex Systems and Elements of Optimal Control Theory, Sovetskoe Radio, Moscow

(in Russian).
Romero, C. (1991) Handbook of Critical Issues in Goal Programming, Pergamon Press, Oxford.
Roy, B. (1972) Décisions avec critères multiples: problèmes et méthodes. Merta International, 11 (2), 121–151.
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5
Introduction to Preference
Modeling with Binary
Fuzzy Relations

In this chapter, we present an introduction to preference modeling realized in terms of binary
fuzzy relations and address certain difficulties that arise in the extension of the classical or
Boolean preference structures of binary relations (which is a well-established research area)
to the fuzzy environment. Particularly, the extension of the classical structures to their fuzzy
counterparts requires the selection of a De Morgan triplet and of adequate functions to construct
suitable binary fuzzy relations of strict preference, indifference, and incomparability. Unfor-
tunately, it is not that simple to implement this extension (we must be prudent when it comes
to the selection of t-norms). In this context, the current chapter recalls some concepts related
to binary fuzzy relations and some specific t-norms, t-conorms, and negation operators, which
will play an important role. Then, we define preference structures of binary fuzzy relations (or
fuzzy preference structures) and outline a method for constructing these fuzzy structures, with-
out losing important characteristics of the classical preference structures of binary relations.

5.1 Binary Fuzzy Relations and their Fundamental Properties

As stated in Chapter 2, the binary fuzzy relation (BFR) consists of a fuzzy set with bidi-
mensional (that is, defined for two arguments) membership function R : X × X → [0, 1].
In essence, such relations associate with each ordered pair of elements (Xk, Xl ), where
Xk, Xl ∈ X, a number R(Xk, Xl ) coming from the unit interval that reflects a degree to
which elements Xk and Xl are in relation R.

Particularly, when we deal with discrete (finite) sets of alternatives in preference modeling,
the BFRs are commonly represented in two different ways:

� a square matrix R of dimension equal to the number of elements of X, whose each entry rkl

corresponds to R(Xk, Xl );

Fuzzy Multicriteria Decision-Making: Models, Methods and Applications          Witold Pedrycz, Petr Ekel and Roberta Parreiras
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Figure 5.1 Relation R of Example 4.1 represented as a graph.

� a weighted graph where each element from X is symbolized by a node and the relations
between the elements are represented as weighted arcs, in such a way that R(Xk, Xl )
corresponds to an arc oriented from Xk toward Xl .

Example 5.1. Consider a set X = {X1, X2, X3}, where all possible pairs of elements
are interrelated as follows: R(X1, X1) = R(X2, X2) = R(X3, X3) = 1, R(X1, X2) = 0.4,
R(X1, X3) = 0, R(X2, X1) = 1, R(X2, X3) = 0.7, R(X3, X1) = 0.3, and R(X3, X2) = 0.6.
The fuzzy binary relation R can be equivalently represented as the directed graph shown in
Figure 5.1 or as a square matrix with the entries

R =
⎡
⎣

1 0.4 0
0.1 1 0.3
0.3 0.6 1

⎤
⎦ (5.1)

Given a generic BFR R, its inverse (or transpose) relation R−1, its complementary relation R,
and its dual relation Rd are, respectively, defined as follows (Fodor and Roubens, 1994b):

R−1(Xk, Xl ) = R(Xl , Xk) (5.2)

R(Xk, Xl ) = 1 − R(Xk, Xl ) (5.3)

Rd (Xk, Xl ) = 1 − R(Xl , Xk) = (R−1(Xk, Xl ))
c (5.4)

Example 5.2. By applying (5.2)–(5.4) to matrix R of Example 5.1, the following matrices
are obtained:

R−1 =
⎡
⎣

1 0.1 0.3
0.4 1 0.6
0 0.3 1

⎤
⎦ (5.5)
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R =
⎡
⎣

0 0.6 1
0.9 0 0.7
0.7 0.4 0

⎤
⎦ (5.6)

Rd =
⎡
⎣

0 0.9 0.7
0.6 0 0.4
1 0.7 0

⎤
⎦ (5.7)

Now, let us recall from Chapter 2 some basic concepts related to fuzzy relations, which will
be utilized here. These are the operations of intersection, union, and complement of fuzzy
relations, as well as some properties utilized to characterize binary fuzzy relations.

It should be noted that in this chapter, for the benefit of increased readability, the operations of
intersection, union, and complement of fuzzy relations are represented using a specific notation
that indicates which particular t-norm, t-conorm, and negation is utilized to implement these
operations. In this way, given two generic BFRs defined in X × X, namely Q and R, and a
pair of alternatives, (Xk, Xl ) ∈ X × X, we have:

� Q ∩T R corresponds to the intersection of Q and R, implemented with a t-norm T :
T ( Q(Xk, Xl ), R(Xk, Xl ));

� Q ∪S R corresponds to the union of Q and R, implemented with a t-conorm S:
S( Q(Xk, Xl ), R(Xk, Xl ));

� N (R) corresponds to the complement of R, implemented with the negation operator N .

In particular, a specific type of De Morgan triplet, based on the Lukasiewicz triplet, will prove
to be important for the development of fuzzy preference structures. But, before presenting
this triplet, it is necessary to introduce some basic concepts such as automorphism φ and
the φ-transform of a t-norm and of a t-conorm. These concepts are defined in conformity
with the main references (Fodor and Roubens, 1994a; De Baets and Van De Walle, 1997;
Bufardi, 1998).

Any continuous and strictly increasing function φ : [0, 1] → [0, 1] is called an automor-
phism of the unity interval, if it satisfies the boundary conditions φ(0) = 0 and φ(1) = 1.

Considering that x, y ∈ [0, 1], a φ-transform of a t-norm T with the automorphism φ is the
t-norm

T φ(x, y) = φ−1(T (φ(x), φ(y))) (5.8)

Similarly, a φ-transform of a t-conorm S with the automorphism φ is the t-conorm

Sφ(x, y) = φ−1(S(φ(x), φ(y))) (5.9)

The Archimedean t-norm is defined as the t-norm satisfying the condition

T (x, x) < x ∀x ∈ [0, 1] (5.10)
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A t-norm T is said to have zero divisors if it satisfies the relationship

T (x, y) = 0 for some positive x and y (5.11)

The Lukasiewicz t-norm is a commonly encountered example of a continuous Archimedean
t-norm with zero divisors. An important result demonstrated in Ovchinnikov and Roubens
(1991) is that any continuous Archimedean t-norm T with zero divisors can be represented as
a φ-transform of the Lukasiewicz t-norm as follows:

Tφ(x, y) = φ−1(max(φ(x) + φ(y) − 1, 0)) (5.12)

where x, y ∈ [0, 1].
If the same automorphism φ is applied to obtain the φ-transform of the complement N , the

φ-transform of the Lukasiewicz t-norm T and the φ-transform of the Lukasiewicz t-conorm
S, a Lukasiewicz-like De Morgan triplet (Tφ, Sφ, Nφ) is obtained, where Tφ is given by (5.12),
Nφ is given by

Nφ(x) = φ−1(1 − φ(x)) (5.13)

and Sφ can be determined as

Sφ(x, y) = φ−1(min(φ(x) + φ(y), 1)) (5.14)

Furthermore, we consider several properties to characterize the binary fuzzy relations, which
are of interest in the context of preference modeling (Öztürk, Tsoukiàs, and Vincke, 2005).
Next, we present a list of properties of binary fuzzy relations, which is more extensive than
the one presented in Chapter 2:

Reflexivity : R(Xk, Xk) = 1 ∀Xk ∈ X (5.15)

Irreflexivity : R(Xk, Xk) = 0 ∀Xk ∈ X (5.16)

Symmetry : R(Xk, Xl ) = R(Xl , Xk) ∀Xk, Xl ∈ X (5.17)

T -asymmetry : T (R(Xk, Xl ), R(Xl, Xk)) = 0 ∀Xk, Xl ∈ X (5.18)

T -antisymmetry : T (R(Xk, Xl ), R(Xl, Xk)) = 0 ∀Xk, Xl ∈ X|Xk �= Xl (5.19)

T -transitivity : R(Xk, Xn) ≥ T (R(Xk, Xl ), R(Xl, Xn)) ∀Xk, Xl , Xn ∈ X (5.20)

S-completeness : S(R(Xk, Xl ), R(Xl, Xk)) = 1 ∀Xk, Xl ∈ X|Xk �= Xl (5.21)

Additive reciprocity : R(Xk, Xl ) + R(Xl , Xk) = 1 ∀Xk, Xl ∈ X (5.22)

As can be seen, some of these properties, namely T-asymmetry, T-antisymmetry, T-transitivity,
and S-completeness, require the selection of t-norms and t-conorms to implement the logical
connectives AND and OR as operations on the unit interval. One can note that the selection
of different operators to implement the logical connectives results in different definitions for
these properties.

In particular, the family of T-transitivities deserves special attention here. As indicated
in Chapter 2, the basic idea behind transitivity is that the strength of the direct relationship
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between two elements should not be weaker than their indirect relationship involving other
elements. In the case of preference modeling, transitivity has been adopted as a consistency
condition in the sense that it can be associated with the following idea: if someone says that Xk

is better than X j and that X j is better than Xl , then it is expected that this person prefers Xk to
Xl at least until a minimum strength and it is not expected that they prefer Xl to Xk (however,
it is important to indicate that there are counterexamples of the validity of this assumption, as
will be seen in Section 5.5). From a practical viewpoint, depending on the selected transitivity
property, the corresponding consistency condition may become more rigorous or could be
somewhat relaxed. The family of T-transitivities includes:

� the min-transitivity condition for fuzzy preference relations

R(Xk, Xn) ≥ min(R(Xk, Xl ), R(Xl, Xn)) (5.23)

� the product-transitivity condition

R(Xk, Xn) ≥ R(Xk, Xl ).R(Xl , Xn) (5.24)

� the Lukasiewicz-transitivity condition

R(Xk, Xn) ≥ max(R(Xk, Xl ) + R(Xl , Xn) − 1, 0) (5.25)

Example 5.3. Given three alternatives, X1, X2, X3 ∈ X, consider that their relationships are
captured in the form of a symmetric BFR R in such a way that R(X1, X2) = R(X2, X1) = 0.5,
R(X2, X3) = R(X3, X2) = 0.2. Suppose that the missing value of the relation R(X1, X3) (and
R(X3, X1)) can be convincingly estimated by admitting that R satisfies:

(a) the Lukasiewicz-transitivity condition

R(X1, X3) ≥ max(0.5 + 0.2 − 1, 0) (5.26)

R(X1, X3) ≥ 0.3 (5.27)

(b) the min-transitivity condition

R(X1, X3) ≥ min(0.5, 0.2) (5.28)

R(X1, X3) ≥ 0.2 (5.29)

5.2 Preference Modeling with Binary Fuzzy Relations

Let us consider that a DM is asked to compare two alternatives Xk, Xl ∈ X and determine
which one of these two he/she prefers. One of the following answers is expected:

� Xk and Xl are indifferent;
� Xk is strictly better than Xl ;
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� Xl is strictly better than Xk ;
� Xk and Xl are incomparable (the DM may not be able to compare the alternatives).

Accordingly, in order to realistically characterize this comparison between two alternatives,
three main types of judgments can be distinguished, namely indifference, strict preference,
and incomparability. These judgments can be modeled by means of BFRs, in such a way
that the membership function of each BFR reflects the credibility or the intensity of the
observed judgment, being quantified in the interval [0,1]. The coherence between the model
and the corresponding judgment is assured by requiring that each BFR should have some basic
properties, in accordance with the nature of the judgment that it is supposed to reflect.

Next, we define and characterize the indifference, strict preference, and incomparability
judgments as BFRs. Let us start with the judgment of indifference, which is utilized in
situations where a DM thinks that both alternatives satisfy equally well his/her interests.
Indifference can be modeled as a BFR I with the following properties:

� reflexivity: a DM is always indifferent to Xk and Xk ;
� symmetry: statement “Xk is indifferent to Xl” is equivalent to statement “Xl is indifferent

to Xk”.

Strict preference is the judgment utilized when a DM can identify which one is the best of two
alternatives. Strict preference can be modeled as a BFR P , which is supposed to satisfy the
conditions:

� irreflexivity: a DM cannot strictly prefer Xk to Xk ;
� T-asymmetry: a DM cannot strictly prefer Xk to Xl and Xl to Xk , at the same time.

Incomparability is utilized when a DM cannot express his/her opinion, that is, in those situations
where a DM is asked about his/her preference and the answer is “I do not know”, due to missing
or uncertain information or as a consequence of the existence of conflicting information.
The incomparability judgment is reflected by means of the BFR J , which must possess the
following properties:

� irreflexivity: a DM cannot say that Xk is incomparable to Xk ;
� symmetry: statement “Xk is incomparable to Xl” is equivalent to statement “Xl is incompa-

rable to Xk”.

When we focus on fuzzy models of preference expressed in terms of BFRs, it is also important
to consider the fuzzy nonstrict preference relation R (also named or fuzzy large preference
relation or fuzzy weak preference relation). The relation R(Xk, Xl ) reflects the degree to which
Xk is at least as good as (or is not worse than; or weakly dominates) Xl . In a somewhat loose
sense (Kulshreshtha and Shekar, 2000) R(Xk, Xl ) also represents the degree of truth of the
statement “Xk is at least as good as Xl”. Accordingly, R is a reflexive relation, which can be
defined as the union of strict preference and indifference:

R = P ∪S I (5.30)
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Figure 5.2 Partition of X × X and relationships between P, I, J, R, and R−1.

Equivalently, in a less intuitive way, this relation can be stated in the form

Rd = P ∪S J (5.31)

With the use of the operations on fuzzy sets, it is possible to define I , P , and J exclusively
in terms of R (Figure 5.2 shows the partition of X × X and the existing interactions among
I , P , and J (Fodor and Roubens, 1993)). By considering that I corresponds to all pairs of
alternatives that simultaneously satisfy R(Xk, Xl ) and R(Xl, Xk), the indifference relation can
be stated as

I = R ∩T R−1 (5.32)

Similarly, as P(Xk, Xl ) implies R(Xk, Xl ) and N (R(Xl , Xk)), the strict preference can be
specified as

P = R ∩T Rd ,P ∩T P−1 = φ (5.33)

Finally, as the relation J(Xk, Xl ) implies N (R(Xk, Xl )) and N (R(Xl, Xk)), the incomparabil-
ity relation is given by

J = R ∩T Rd ,J = J−1 (5.34)

Therefore, once we have at hand the values of R(Xk, Xl ) and R(Xl , Xk), the estimation of I ,
P , and J is realized with the use of (5.32), (5.33), and (5.34), respectively. In applications,
when the cardinality of X is low, a DM is usually asked to pick the values in the unit interval
that reflect the level of credibility or just the strength of his/her nonstrict preference for one
alternative over another. At this point, we should pay attention to the fact that there are
several ways of constructing the fuzzy nonstrict preference relations. Particularly, they can
be directly assessed by a DM or indirectly determined by a DM, who is supposed to express
his/her preferences using other preference formats. This subject will be further discussed in
Chapter 6.
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Regardless of the method utilized to construct a fuzzy nonstrict preference relation, the
fuzzy strict preference and indifference relations can be derived from that relation in a number
of ways. The most popular way is also the one that happened to be introduced the earliest. In
his original work (Orlovsky, 1978), Orlovsky proposed to derive the fuzzy strict preference
and fuzzy indifference relations from the fuzzy nonstrict preference relation as follows:

P(Xk, Xl ) = max(R(Xk, Xl ) − R(Xl , Xk), 0) (5.35)

I(Xk, Xl ) = min(R(Xk, Xl ), R(Xl, Xk)) (5.36)

Example 5.4. Consider that R corresponds to the fuzzy nonstrict preference relation provided
by an expert who has been asked to compare three alternatives by using values coming from
the unit interval that reflect the degree of nonstrict preference of one alternative over another:

R =
⎡
⎣

1 0 0.4
1 1 1
1 0.8 1

⎤
⎦ (5.37)

By applying (5.35) and (5.36) to (5.37), the following relations are derived:

P =
⎡
⎣

0 0 0
1 0 0.2

0.6 0 0

⎤
⎦ (5.38)

I =
⎡
⎣

1 0 0.4
0 1 0.8

0.4 0.8 1

⎤
⎦ (5.39)

The reader can easily note in Example 5.4 that the resulting relations, P and I , satisfy
their respective properties, that is, P is irreflexive and min asymmetric (a proof of the min
asymmetry of P can be found in Fodor and Roubens, 1994a), and I is reflexive and symmetric.
It is interesting to observe that I has entries distributed symmetrically along the main diagonal,
as a natural outcome of the symmetry of the indifference relation. Furthermore, whereas the
diagonal of I is filled with “ones”, being a consequence of the reflexivity of I , the diagonal
of P is filled with zeros, as a result of the irreflexivity of P .

After the pioneering contribution of Orlovsky, several researchers developed other defini-
tions of fuzzy preference relations. Among the most relevant contributions, we can refer to
Ovchinikov (1981), Roubens (1989), and Ovchinikov and Roubens (1991). They defined the
fuzzy strict preference relation, as summarized in Table 5.1, and relation I in the same way as
Orlovsky did (Fodor and Roubens, 1993).

An overview of these works, as well as other similar studies, can be found in De Baets and
Fodor (1997). However, it is important to indicate that these works correspond to independent
efforts to define fuzzy preference relations (De Baets and Fodor, 1997). A more formal class
of results can be also found in the literature. They correspond to axiomatic methods for
extending the classical or Boolean preference models to the fuzzy environment, in an attempt
to derive the fuzzy strict preference, indifference, and incomparability relations from a fuzzy
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Table 5.1 Fuzzy strict preference relations

Reference Expressions

Ovchinikov (1981) P(Xk, Xl ) ={
R(Xk, Xl ) if R(Xk, Xl ) > R(Xl , Xk)
0

Roubens (1989) P(Xk, Xl ) = T (R(Xk, Xl ), 1 − R(Xl , Xk))
Ovchinikov and Roubens (1991) P(Xk, Xl ) = Tφ(R(Xk, Xl ), Nφ(R(Xl , Xk)))

large preference relation R, without losing the fuzzy counterparts of the Boolean preference
structures. In what follows, we will address the supporting concepts related to the construction
of fuzzy preference structures.

5.3 Preference Structure of Binary Fuzzy Preference Relations

In general, given the De Morgan triplet (T , S, N), a fuzzy preference structure (FPS) of
BFRs can be defined as a collection of fuzzy binary relations P , I , and J that satisfies some
requirements. It is instructive to start with a full list of conditions to be satisfied by these
relations, in order to avoid losing some practical aspects of the structure. However, it should
be indicated that this list is not the minimal one, that is, some of the conditions shown there
are redundant (De Baets and Van De Walle, 1997).

For every (Xk, Xl ) ∈ X × X, it is required that (De Baets and Van De Walle, 1997):

I is reflexive and symmetric (5.40)

P is irreflexive and T -asymmetric (5.41)

J is irreflexive and symmetric (5.42)

P ∩T I = Ø (5.43)

P ∩T J = Ø (5.44)

J ∩T I = Ø (5.45)

P ∪S P−1 ∪S I ∪S J = X × X (5.46)

Conditions (5.40)–(5.42) refer to the set of properties that relations P , I , and J must
have in order to guarantee that the observed characteristics of the judgments provided by
a DM are properly reflected by the model (as discussed in the previous section). Conditions
(5.43)–(5.45) preserve the mutually exclusive character of these judgments. Furthermore, con-
ditions (5.43)–(5.45), in conjunction with the completeness condition (5.46), assert that each
couple of alternatives necessarily belongs exactly to one of relations P , P−1, I , or J .

At this point, it should be clear to the reader that the definition of a FPS requires the selection
of a De Morgan triplet and that the selection of different triplets obviously results in different
FPSs. However, a negative result demonstrated by Alsina (1985) indicates that if a De Morgan
triplet (T, S, N ) is utilized to represent the complement, intersection, and union of BFRs, then
the equality

Z = (Z ∩T W ) ∪S (Z ∩T W ) (5.47)
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is not satisfied for any BFRs Z and W . If we consider Z as being R and W as Rd , then this
implies that the relationships P = R ∩T Rd , I = R ∩T R−1, and R = P ∪S I are inconsistent
for any reflexive fuzzy binary relation R. For this reason, the extension (fuzzification) of the
classical preference structures is not as straightforward as we might have expected (Bufardi,
1999). In the next section, we will see which t-norms can be considered in the definition of a
FPS satisfying properties (5.40)–(5.46).

5.4 A Method for Constructing a Fuzzy Preference Structure

The nonintuitive result demonstrated by Alsina (1985) motivated several researchers to work
on the development of axiomatic ways of constructing a FPS (see, for instance, Ovchinnikov
and Roubens, 1992; Fodor and Roubens, 1994a; Bufardi, 1998; Llamazares, 2003; Fodor and
Rudas, 2006; Fodor and De Baets, 2008). This section presents the main results associated
with the method introduced by Fodor and Roubens (1994a), which starts by considering the
following axioms:

� Independence of irrelevant alternatives: Given two alternatives Xk and Xl , the value of
P(Xk, Xl ), I(Xk, Xl ), and J(Xk, Xl ) must depend only on the values of R(Xk, Xl) and
R(Xl, Xk). In this way, there are mappings from [0, 1] × [0, 1] → [0, 1], namely P(x, y),
I (x, y), and J (x, y), that satisfy the following conditions:

P(Xk, Xl ) = P(R(Xk, Xl ), N (R(Xl, Xk))) (5.48)

I(Xk, Xl ) = I (R(Xk, Xl ), R(Xl, Xk)) (5.49)

J(Xk, Xl ) = J (N (R(Xk, Xl )), N (R(Xl , Xk))) (5.50)

Each function, say P(x, y), I (x, y), and J (x, y), works as a generator function of a strict
preference relation, an indifference relation, and an incomparability relation, respectively.
They must be defined in such a way that the positive association principle and the symmetry
property are satisfied:

� Positive association principle: Functions P(x, y), I (x, y), and J (x, y) must be nondecreasing
with respect to the first argument and nonincreasing with respect to the second argument.
The monotonicity of P(x, y), I (x, y), and J (x, y) with respect to its respective arguments
is coherent with the data shown in Table 5.2, which presents the Boolean (two-valued)
conditions for the classical binary relations P , I , and J , for different states of R(Xk, Xl )
and R(Xl , Xk) (Fodor and Roubens, 1994a; Fodor and Roubens, 1994b).

Table 5.2 Monotonicity of P , I , and J

R(Xk, Xl ) R(Xl , Xk) P(Xk, Xl ) I(Xk, Xl ) J(Xk, Xl )

0 0 0 0 1
0 1 0 0 0
1 0 1 0 0
1 1 0 1 0
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The positive association principle can be justified by the following observations: in the
case of P , considering the first argument of P(x, y), if the level of nonstrict preference of
Xk over Xl increases, it is naturally expected that the level of strict preference of Xk over
Xl does not decrease. On the other hand, if we consider the second argument of P(x, y), if
the level in which Xl is at least as good as Xk is increasing, then we expect that the level of
strict preference of Xk over Xl does not increase. Similar observations justify the principle
of positive association for I (x, y) and J (x, y).

� Symmetry: As I and J are symmetric relations, functions I (x, x) and J (x, x) must be
symmetric concerning their respective arguments.

Starting from these axioms, the construction of a fuzzy structure consists of defining six
continuous functions defined in [0, 1] × [0, 1] → [0, 1]. They are the generator functions
P(x, y), I (x, y), and J (x, y) and the triplet of De Morgan operators (T, S, N ), which can
be determined by solving the system of equations for any pair (Xk, Xl ) ∈ X × X,

{
S(P(Xk, Xl ), I(Xk, Xl )) = R(Xk, Xl )

S(P(Xk, Xl ), J(Xk, Xl )) = Rd (Xk, Xl)
(5.51)

where P , I , and R are given by expressions (5.48)–(5.50) respectively, which are sup-
posed to satisfy the axioms of the positive association principle and that of symmetry.
Obviously, solving (5.51) is not a simple task. Fortunately, the results presented by Fodor
and Roubens (1994a) allow us to characterize the complete set of solutions for this system
of equations.

It has been proved that if a particular set of continuous functions (T, S, N , P, I, J ) is a
solution of (5.51), then there is an automorphism φ of the unit interval such that T is the
φ-transform of the Lukasiewicz t-norm as defined by (5.12), N is the φ-transform of the
standard negation, as given by (5.13), and S is the φ-transform of the Lukasiewicz t-conorm
as given by (5.14). In other words, this means that T must be Archimedean with zero divisors.
Van de Walle, De Baets, and Kerre (1998) demonstrated that when T is non-Archimedean,
having zero divisors, the degree of strict preference, indifference, and incomparability in
[0,1[ is bounded by a value strictly lower than one. This violates the assignment principle,
which is the most important requirement for a fuzzy preference structure (Fodor and De
Baets, 2008):

� Assignment principle: For any pair of alternatives (Xk, Xl) ∈ X × X, a DM can pick from
the unit interval any value to assign at least one of the degrees P(Xk, Xl ), P(Xl, Xk),
I(Xk, Xl ), and J(Xk, Xl ).

Furthermore, it is also demonstrated that the solution to (5.51) necessarily satisfies the follow-
ing inequalities (Fodor and Roubens, 1994a):

Tφ(R(Xk, Xl ), Nφ(R(Xl , Xk))) ≤ P(Xk, Xl ) ≤ min(R(Xk, Xl ), Nφ(R(Xl, Xk))) (5.52)

Tφ(R(Xk, Xl ), R(Xl , Xk)) ≤ I(Xk, Xl ) ≤ min(R(Xk, Xl ), R(Xl, Xk)) (5.53)

Tφ(Nφ(R(Xk, Xl)), Nφ(R(Xl , Xk))) ≤ J(Xk, Xl ) ≤ min(Nφ(R(Xk, Xl)), Nφ(R(Xl , Xk)))

(5.54)
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Among possible solutions of (5.51), the one given by

⎧⎨
⎩

P = max(R(Xk, Xl ) − R(Xl , Xk), 0)
I = min(R(Xk, Xl ), R−1(Xk, Xl ))
J = min(1 − R(Xk, Xl ), 1 − R(Xl, Xk))

(5.55)

deserves special attention. The reader should note that the expression for P in (5.55) can be
obtained by substituting the generator function P(x, y) in (5.48) by the Lukasiewicz t-norm,
as follows:

P(Xk, Xl ) = max(R(Xk, Xl ) + N (R(Xl, Xk)) − 1, 0). (5.56)

Given that N (R(Xl , Xk)) = 1 − R(Xl, Xk), it is easy to see that (5.56) and (5.55) are equiv-
alent. It is also worth noting that this corresponds to an extreme solution of (5.51), as the
formula of P in (5.55) returns the lower limit of (5.52) and, at the same time, both I and J
(defined as in (5.55)) correspond to the upper limits of (5.53) and of (5.54), respectively.

Further, the preference structure given by (5.55) has an interesting property: if the fuzzy
nonstrict preference relation satisfies the min-transitivity condition, then both I and P certainly
satisfy the min-transitivity, as demonstrated by Burfardi (1998). From a practical point of view,
this property is rather meaningful, given that min-transitivity has been traditionally taken as
a consistency condition for pairwise judgments (Zimmermann, 1996). However, as will be
discussed in the next section and in Chapter 6, the current literature still lacks a fair consistency
condition for the pairwise judgments expressed in terms of fuzzy preference relations.

Finally, it is also important to indicate that, as one can see by comparing the definitions of P
and I in (5.55) to the expressions proposed by Orlovsky for fuzzy strict preference and fuzzy
indifference relations (see (5.35) and (5.36)), they are equivalent. Indeed, the preference model
proposed by Orlovsky can be viewed as a particular case of (5.55), where the incomparability
relation corresponds to an empty set and R is complete, in the sense that it satisfies the
max-completeness property

max(R(Xk, Xl ), R(Xl, Xk)) = 1 (5.57)

Figures 5.3–5.6 offer graphical representations of relations P , I , and J being expressed in
terms of R and R−1. As can be seen, when condition (5.57) is satisfied, the incomparability
relation J corresponds to an empty relation.

5.5 Consistency of Fuzzy Preference Relations

In the Boolean context, the concept of consistency has traditionally been defined in terms of
acyclicity, that is, the absence of cycles or sequential judgments such as

R(X1, X2), R(X2, X3), . . . , R(Xk, Xk+1), R(Xk+1, X1) (5.58)

In the context of fuzzy sets, the traditional requirement to characterize consistency has been
enriched by also considering the intensity of preferences. Among the most utilized consistency
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Figure 5.3 Fuzzy strict preference relation P defined by (5.55).

conditions for fuzzy preference relations, we can name the min-transitivity, which is given by
(5.23), and the weak-transitivity condition, which is given by the following:

If R(Xk, X j ) ≥ R(X j , Xk) and R(X j , Xl) ≥ R(Xl , X j ),
then R(Xk, Rl) ≥ R(Xl , Xk) ∀Xk, X j , Xl ∈ X

(5.59)

The interpretation of (5.59) leads to the minimum requirement that should be satisfied by the
preference judgments supplied by a rational person. This implies that if someone says that Xk

is preferred to X j and that X j is preferred to Xl , then Xk is preferred to Xl , without considering
the strength of the preferences.
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Figure 5.4 The inverse P−1 of the fuzzy strict preference relation defined by (5.55).
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Figure 5.5 Fuzzy indifference relation I defined by (5.55).

The min-transitivity is a stronger consistency condition than the weak transitivity, as it
enhances the weak transitivity by also requiring that the strength of preference of Xk over
Xl should be higher than the strength of preference observed between Xk and X j , as well as
between X j and Xl . However, as indicated by Herrera-Viedma et al. (2004), min-transitivity
may be considered excessively rigorous as even a fuzzy preference relation, perfectly consistent
for practical purposes, may not satisfy the min-transitivity.

In reality, the problem concerning the consistency of fuzzy preference relations lies in
the fact that it is usually difficult to guarantee any level of consistency within the pairwise
comparisons provided by the DMs in the decision-making process. Under this scenario, the
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Figure 5.6 Fuzzy incomparability relation J defined by (5.55).
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definition of a reasonable consistency condition for fuzzy preference relations has been a
topic of debate in the fuzzy community (Herrera-Viedma et al., 2004). This debate has been
motivated mainly by the following aspects:

� in real applications, a DM is usually incapable of providing perfectly consistent judgments,
in particular when the set of alternatives is large;

� the lack of consistency within the judgments can lead to incompatible conclusions;
� some works in the literature recognize that rational judgments may not be always transitive.

One instructive example of intransitive preferences is related to the comparison of three chess
players, Xk , X j , and Xl , exhibiting very different strategies (Hwang and Yoon, 1981). Whereas
it is expected that Xk triumphs over X j and that X j triumphs over Xl , due to the peculiarities of
their respective strategies, when Xk challenges Xl , one can expect that Xl will be the winner,
because of a particular capacity of Xl to take advantage of the weakness of Xk .

A classical example that illustrates the fact that indifference is not transitive refers to the
amount of sugar in a cup of coffee. One can judge that adding a lump of sugar or no sugar to
the coffee is indifferent, because it is almost impossible to perceive a change in the taste of
the coffee; for the same reason, one can judge that adding a lump or two is indifferent; adding
two lumps or three is indifferent; and so forth. If it is assumed that indifference is transitive,
we can make the erroneous conclusion that it does not matter if one or ten lumps of sugar
are dropped in the coffee, which obviously is not true. In reality, situations where a series of
subsequent indifferences results in a preference are not rare.

Taking all of these observations into consideration, usually, the T-transitivity property has
not been imposed as a requirement to be specified by the fuzzy nonstrict preference, the fuzzy
strict preference, or the fuzzy indifference relations. However, the fact that inconsistencies
within pairwise judgments may lead to incoherent results for decision-making problems has
motivated several authors to investigate whether certain fuzzy preference relations satisfy
the T-transitivity. In practice, this finding is rather valuable for the selection of a method of
analysis of 〈X, R〉 models adequate for dealing with cyclic preferences, whenever it is not
possible to guarantee the T-transitivity of the fuzzy preference relations of the 〈X, R〉 model
under consideration.

5.6 Conclusions

In this chapter, we have considered some selected issues related to preference modeling through
preference structures of binary fuzzy relations, including the definition of fuzzy preference
structures, a method for constructing a fuzzy preference structure, and the insertion of the
particular results of the pioneering and seminal paper of Orlovsky (Orlovsky, 1978), into an
axiomatic framework.

As indicated in the text, extending the Boolean definition of preference structure to fuzzy
settings requires the adherence to certain conditions, related to the selection of a De Morgan
triplet to implement the AND, OR, and NOT operators on the unit interval. Fortunately, with
the advance of the research on this topic, it has been possible to construct reasonable preference
models, with large applicability in the areas of multicriteria analysis and decision-making. The
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reader can refer to Fodor and De Baets (2008) for more recent results on the development of
fuzzy preference structures.

The fact that in real-world situations the transitivity may not be inherent to the fuzzy
preference relations has led the research community to consider the development of rather
flexible structures. Usually, the T-transitivity property has not been imposed as a requirement
to be verified by the fuzzy nonstrict preference, the fuzzy strict preference, and the fuzzy
indifference relations. However, the fact that inconsistent fuzzy preference relations may
lead to incoherent results for decision-making problems has motivated several authors to
investigate whether certain fuzzy preference relations satisfy the T-transitivity property. A
further discussion on the consistency of preference relations is presented in the next chapter.

Exercises

Problem 5.1. Verify whether the fuzzy relation

R =

⎡
⎢⎢⎣

1 0.5 0.5 0.5
0.5 1 0.5 0.5
0.6 0.6 1 0.6
0.7 0.5 0.5 1

⎤
⎥⎥⎦

satisfies (a) reflexivity, (b) min-asymmetry, (c) max-completeness, (d) min-transitivity.

Problem 5.2. Derive the fuzzy strict preference relation and the fuzzy indifference relation
from the fuzzy nonstrict preference relation of Problem 5.1, by using (5.35) and (5.36),
respectively.

Problem 5.3. Verify whether the resultant fuzzy indifference relation from Problem 5.2 is
(a) reflexive, (b) symmetric, and (c) min-transitive.

Problem 5.4. Verify whether the fuzzy strict preference relation obtained in Problem 5.2 is
(a) irreflexive, (b) min-asymmetric, and (c) min-transitive.

Problem 5.5. Verify whether the fuzzy relations

(a) R

⎡
⎣

1 0.9 0.8
0.01 1 0.94
0.11 1 1

⎤
⎦ (b) R

⎡
⎣

1 0 0
0 1 0
1 1 1

⎤
⎦

satisfy max-completeness. Derive the incomparability relation from R with the use of (5.55).
Relate the obtained result to the max-completeness property.
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6
Construction of Fuzzy
Preference Relations

In dealing with 〈X, R〉 models, which are constructs for multiattribute decision-making, based
on fuzzy preference relations, a fundamental question arises on how one can construct fuzzy
preference relations to reflect the preferences of a DM. In practice, a DM can directly quantify
the fuzzy preference relation. Alternatively, a DM can use other ways to express prefer-
ences, which can be then converted into fuzzy preference relations with the use of adequate
transformations. Taking this into consideration, in this chapter we present five main prefer-
ence formats which cover a majority of real-world situations when preparing information for
decision-making problems. These formats are the ordering of alternatives, utility values, fuzzy
estimates, multiplicative preference relations, and fuzzy preference relations. The chapter also
presents transformation functions used for converting different preference formats into fuzzy
preference relations. Taking into account the importance of collecting consistent judgments,
some questions of repairing inconsistencies in the estimates of judgments of DMs/experts are
also discussed.

6.1 Preference Formats

In real-world applications, every professional involved in any decision process has their own
perception of the problem, a different way of thinking, and usually access to different sources
of information. As a consequence, it is quite natural to envision circumstances where every
DM selects a different way to express their preferences. Furthermore, several factors may lead
a DM to select a different way for expressing preferences about each criterion. Among these
factors we can list the following:

� Each criterion comes with its significance (a fundamental feature which provides significance
on the difference between two degrees evaluated for this criterion). Depending on whether
this significance has a qualitative or quantitative character, the use of certain preference
formats can make the preference elicitation process easier and also more reliable.

Fuzzy Multicriteria Decision-Making: Models, Methods and Applications          Witold Pedrycz, Petr Ekel and Roberta Parreiras
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� Each criterion is associated with information arising from different sources and with infor-
mation having different levels of uncertainty.

� A DM may find that his/her preference strengths can be better reflected or quantified by a
specific preference format.

� The fact that a DM may possess previous knowledge or experience in expressing a specific
preference format can motivate him/her to choose it again.

In the current literature on decision-making, we can distinguish eight preference formats that
can be utilized to establish preferences for the alternatives under consideration (Zhang, Chen,
and Chong, 2004; Zhang, Wang, and Yang, 2007). With the availability of different formats,
a DM can select the one that makes him/her feel more comfortable in articulating his/her own
preferences. Next, we describe five preference formats, which cover most of the real-world
situations. They include:

1. The ordering of the alternatives
2. Utility values
3. Fuzzy estimates
4. Multiplicative preference relations
5. Fuzzy preference relations.

6.1.1 Ordering of Alternatives

When a DM encounters difficulties in assessing quantitatively the strength of preferences, it
is advantageous to use information of purely ordinal character. By asking a DM to provide
a complete ranking of the alternatives in accordance with his/her preferences, the DM is
released from having to quantify the difference in his/her preference strengths between any
two alternatives. In this way, the chances of deriving recommendations based on incorrect
information are reduced.

The ordering of alternatives from best to worst can be represented as an array
O = [O(X1) . . . O(Xn)], with O(Xk) being a permutation function which returns the po-
sition of alternative Xk among the integer values {1, 2, . . . , n} (Chiclana, Herrera, and
Herrera-Viedma, 1998).

Example 6.1. Consider that a DM is asked to order five alternatives X = {X1, X2, . . . , X5},
from best (first position) to worst (last position) for a given criterion. Table 6.1 shows the
DM’s judgments and the corresponding ordered array. For instance, no. 3 in vector O reflects
the fact that X5 is the third best alternative, according to the DM preferences.

Table 6.1 Ordering of alternatives

Alternatives X1 X2 X3 X4 X5

Positions Second First Fourth Fifth Third
Array O = [2 1 4 5 3]
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6.1.2 Utility Values

The terms “utility function” and “value function” are utilized to refer to two types of preference
models. Utility theory deals with preference models for risky decisions, that is, decisions
involving alternatives whose consequences are uncertain and as a consequence involve risks.
The value theory is considered as a simplification of utility theory for dealing with decisions
under certainty. Here, we intend to focus on preference models based on utility functions
and value functions. However, we describe only the preference elicitation process of value
functions and indicate references (Keeney and Raiffa, 1976; Von Winterfeldt and Edwards,
1986) for preference elicitation procedures associated with the construction of utility functions.
Although the elicitation procedure for each type of model is definitely different, there is no need
to make a distinction among them from the point of view of the use of transformation functions
used for converting them to fuzzy preference relations. Thus, for simplicity of presentation,
from now on, we use the term “utility” to refer to both types of models and, thereby, the text
is coherently maintained with some relevant references about such transformation functions
(Chiclana, Herrera, and Herrera-Viedma, 1998; Chiclana, Herrera, and Herrera-Viedma, 2001;
Zhang, Wang, and Yang, 2007).

Now, let us focus on the representation of the preferences of a DM with the use of the
preference function called the utility function U (x) : X → [0, 1] (by convention, the highest
value of the utility function is equal to one and its lowest value is equal to zero). In the literature,
we can distinguish between two main types of utility functions: the ordinal and the cardinal
ones. The ordinal utility function is related to the ordering of the alternatives rather than
expressing the preference strength of one alternative over another. In real-world applications,
the ordinal utility function is usually modeled by a maximizing profit function or a minimizing
cost function, defined over the significance axis of the criterion being studied (Dyer, 2005).

The ordinal utility function U (x) : X → [0, 1] is supposed to preserve the preference or-
dering of the alternatives in such a way that

if U (Xk) > U (Xl), then Xk is preferred to Xl (6.1)

if U (Xk) = U (Xl), then Xk is indifferent to Xl (6.2)

Since in ordinal utility functions the ranking of the numbers is all that matters, any monotonic
transformation of this function is considered equivalent to it. Indeed, the main weakness of
ordinal utility functions lies in the fact that different ordinal utility functions can be utilized
to reflect the same ordering of the alternatives. However, in the aggregation across the criteria
in the multicriteria analysis, each one of these admissible functions may lead to a different
outcome. Nevertheless, such types of ambiguity can be diminished by using the measurable
or cardinal utility function (rather than the ordinal utility function) to capture the strength of
preferences. Indeed, the use of the cardinal utility function can contribute significantly to the
effectiveness of decision-making by resolving ambiguities that may emerge in the process of
multicriteria analysis.

A very important type of cardinal utility function (Farquhar and Keller, 1989; Belton, 1999;
Dyer, 2005) is founded on differences in preference strengths, in such a way that, for given a
measurable utility function U (x) : X → [0, 1], if we have

U (Xk) − U (Xl ) > U (X j ) − U (Xk) (6.3)
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then we can infer that the difference in the preference between Xk and Xl is greater than the
difference in preference between X j and Xk .

It is worth noting that the ratio between two preference degrees expressed as cardinal utilities
based on interval scales is not meaningful, only their differences or the ratio between their
differences are significant. The ratio between preference strengths makes sense only when
utilities are measured on a ratio scale. This is the most rigorous type of preference measure,
being admissible only when the preference strengths are measured on an appropriate scale with
an absolute zero. Under such circumstances, one can state the preference for any alternative
Xk over another alternative Xl as a ratio U (Xk)/U (Xl ) between their respective utilities, that
is, it is possible to determine how many times alternative Xk is better (or worse) than the other
alternative Xl by means of the ratio U (Xk)/U (Xl).

The interval-scale cardinal utility functions can be determined in several ways. Here we
consider two of them: the direct rating and the bisection techniques. In both of them, a DM is
supposed to compare differences in preference strengths in order to determine the utility of each
alternative. It should be mentioned that these procedures do not accommodate intransitivity in
any form. In this way, a DM is required to reconsider all judgments from which intransitivity
arises. Next, we begin by describing the direct rating. It consists of determining utility values,
taking as reference only two anchor points, in such a way that it is not necessary to define a
scale for characterizing other performances than the alternatives being evaluated (Winterfeldt
and Edwards, 1986; Belton, 1999).

6.1.2.1 Direct Rating Technique

Step 1. A DM identifies two anchors, which correspond to the worst evaluated al-
ternative and the best evaluated alternative, considering the criterion being studied.
The values 0 and 1, respectively, are assigned to them.

Step 2. A DM rates the remaining alternatives in between the extreme points of the
scale, in such a way that the spacing between the alternatives reflects the strength
of preferences of one alternative over another.

Step 3. A DM reviews the assessments and, whenever necessary, updates them
(the process stops only if the DM is in perfect accordance with the elicited utility
values). If the criterion under consideration can be captured by an attribute which
can be measured on a numerical scale, it is possible to plot the assessed points and
draw a smooth curve passing through them.

Example 6.2. Consider that four apartments for rent, namely X1, X2, X3, and X4, are to
be compared by a DM, by taking into account their respective layouts. When analyzing
this decision criterion, the DM is particularly concerned about how the living area of each
apartment is distributed among its rooms.

In Step 1, when the DM involved in decision-making is asked to indicate the anchors, the
apartments X1 and X3, respectively, are identified as the alternatives having the best and the
worst layouts: whereas X1 has a large living area satisfactorily distributed among eight rooms,
X3 is very small and has four rooms, which is not a sufficient number of room in his opinion.

In Step 2, the DM thinks that the difference in preference of X1 over X2 is much lower
than the difference in preference of X2 over X3, as X2 also has a large living area, although
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Figure 6.1 Utilities elicited through the direct rating technique.

it only has five rooms. Besides, the DM thinks that the difference in preference of X4 over
X3 is much lower than the difference in preference of X1 over X4, as X4 is also very small,
being a little larger than X3 and having just one more room than it. Finally, the DM judges
that X2 is preferred to X4, which is coherent with the previously given explanations; the DM
defined the utility values as shown in Figure 6.1. In Step 3, those assessments are confirmed
to be coherent with the preferences of the DM.

It should be mentioned that in the construction of an underlying scale for a criterion, a DM
can think on a local or global scale. For the local scale, the extreme points are defined by
taking as reference only the elements of set X. A global scale is defined by taking as reference
a wider set of possibilities, being the extreme points of the scale set as the ideal and the worst
conceivable performances, or the best and worst performances that in reality could be observed
for this criterion (Belton, 1999). The advantage of a global scale lies in the fact that once it
has been defined, there is no need to modify it if X changes. On the other hand, it is definitely
more difficult to construct a global scale than a local one.

With the use of the mid-value splitting or bisection procedure, having defined a measurable
attribute that captures the criterion under study, a DM is required to seek mid-value points as
described below.

6.1.2.2 Bisection Procedure

Step 1. A DM identifies two anchors, namely x0 and x1, which correspond to the
worst and the best evaluated alternatives for this criterion. The values 0 and 1,
respectively, are assigned to them.

Step 2. A DM determines an object x0.5 that is positioned in the middle between
the two extreme anchors in such a way that, in the DM’s opinion, exchanging x0 for
x0.5 is as attractive as exchanging x0.5 for x1. After assessing x0.5, the procedure
is continued to determine x0.75 and x0.25 (and so forth), which corresponds to
the mid-values of intervals [x0.5, x1] and [x0, x0.5]. In general, as is indicated by
Winterfeldt and Edwards (1986), three points cautiously assessed by a DM may
provide enough information to approximate the curve of the utility function.

Step 3. The assessed points are plotted and a smooth curve is drawn passing
through them. If a DM considers that the curve is a satisfactory representation of
his/her preferences, then the process is terminated.
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Figure 6.2 Smooth utility function elicited by bisection procedure.

Example 6.3. Consider that four apartments for rent are to be compared by a DM, by taking
into account only their respective living areas. The DM is interested in a very large apartment
(the preference increases with the construction size) and the available alternatives, namely X1,
X2, X3, and X4, respectively, have 250 m2, 220 m2, 110 m2, and 120 m2 of living area.

In Step 1, the DM defined a global scale, by indicating 90 m2 as the worst admissible area
and 300 m2 as the ideal area for the desired apartment (more than 300 m2 is useless and hard
to keep clean in the DM’s opinion).

In Step 2, the DM identifies the middle point x0.5 = 170 m2 between the anchors. This
means that, in the DM’s opinion, the exchange of 90 m2 for 170 m2 is equally attractive as the
exchange of 170 m2 for 300 m2. The fitted curve obtained in Step 3 is given in Figure 6.2 and
reflects the DM preferences in a satisfactory manner, as the DM thinks that the improvement
in the utility function associated with the rise of the living area is more significant when the
living area is near to x0, and less significant when the constructed area is near to x1.

6.1.3 Fuzzy Estimates

The elements of X can be evaluated with the use of fuzzy estimates L = {l(X1), . . . , l(Xn)},
with l(Xk) being the fuzzy estimate associated with alternative Xk from the point of view of
a given criterion F . The fuzzy estimate l(Xk) refers to a fuzzy number that can be directly
specified by a DM or indirectly expressed by means of linguistic terms from some set S such as,
for instance, S(F) = {low quality, average quality, high quality}. In the latter case, the linguistic
terms must be converted into fuzzy estimates, as they are required to perform the analysis of the
problem. Although one can find that the use of linguistic terms makes the preference elicitation
process more intuitive, it is important to indicate that the effectiveness of the elicitation can
be diminished due to the existence of differences between numerical interpretations of the
linguistic terms in the expert’s mind and their numerical representation in the model being
utilized. In this context, the techniques discussed in Chapter 3 for constructing and equalizing
fuzzy sets may be helpful for reducing this type of elicitation error.

Example 6.4. A DM utilized linguistic terms from a set S(F) = {very poor, poor, average,
good, very good} to evaluate the layout of each apartment discussed in the previous example.
The set of linguistic terms along with their respective representation through fuzzy sets are
shown in Figure 6.3. The elicited preferences are included in Table 6.2.
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Figure 6.3 Set of linguistic terms.

6.1.4 Multiplicative Preference Relations

The multiplicative preference relation can be represented as an n × n positive reciprocal matrix
M reflecting the preference intensity ratio between the alternatives in accordance with the AHP
approach (Saaty, 1980), as discussed in Chapter 3. Each entry M(Xk, Xl ) of this reciprocal
matrix represents a preference intensity ratio and can be interpreted as “Xk is M(Xk, Xl ) times
more dominant than Xl” (Saaty, 1980) or as “Xk is M(Xk, Xl ) times as good as Xl” (Chiclana,
Herrera, and Herrera-Viedma, 2001).

The elicitation process realized by the AHP allows a DM to express preferences verbally,
through the use of several linguistic terms, or numerically on the basis of different ratio scales.
If a DM uses linguistic terms, these judgments are later converted into numbers, in order to
proceed with the analysis of the decision-making problem. In this way, regardless of how
the elicitation process has been carried out, it is necessary to define an adequate ratio scale.
The selection of a proper ratio scale should be done by considering the entire set of objects
about which ratio comparisons are to be performed (Harker and Vargas, 1987; Salo and
Hämäläinen, 1997).

Under the condition of multiplicative reciprocity, once a DM provides M(Xk, Xl ), the value
of M(Xl, Xk) is automatically inferred as M(Xl, Xk) = 1/M(Xk, Xl ). Although multiplica-
tive preference relations accommodate intransitivity, it is desirable to collect judgments that
are as consistent as possible, since the methods for further analysis of such relations usually
require them to be transitive in order to guarantee results of high quality. As already mentioned

Table 6.2 Evaluation of alternatives by
means of linguistic terms

Apartment Evaluation

X1 very good
X2 good
X3 very poor
X4 poor
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in Chapter 3, the perfect consistency of a multiplicative preference relation is expressed as the
satisfaction of a multiplicative transitivity property, that is,

M(Xk, X j ) = M(Xk, Xl ) · M(Xl, X j ) ∀ j, k, l ∈ {1, 2, . . . , n} (6.4)

In the elicitation process of multiplicative preference relations, it becomes necessary to collect
n(n − 1)/2 pairwise comparisons or else, by enforcing multiplicative transitivity, it is possible
to collect just (n − 1) pairwise comparisons and estimate the missing ones with the help of
(6.4). As described in Chapter 3, when a DM provides all pairwise comparisons, if they do
not satisfy (6.4) it is possible to identify and highlight the inconsistent pairwise comparisons
so that the DM can review them. It is also possible to make use of some automated method
to improve the consistency of the provided multiplicative preference relations (Zeshui and
Cuiping, 1999).

Example 6.5. Let us consider the preference elicitation process realized by means of multi-
plicative preference relations based on the 1–9 scale (refer to Table 3.1) by taking into account
the living area of the four apartments for rent as introduced in Example 6.3. The collected
pairwise judgments are numerically defined by the DM as follows:

� X1 is two times better than X2;
� X1 is seven times better than X3;
� X1 is seven times better than X4;
� X2 is five times better than X3;
� X2 is five times better than X4;
� X3 is as good as X4.

It is interesting to observe the fact that the living area of X2 is two times larger than the
constructed area of X3 (refer to Example 6.3 for the living area of each apartment) and does
not imply that X2 is considered two times better than X3. The quantification of the provided
judgments is reflected by the following reciprocal matrix:

M =

⎡
⎢⎢⎣

1 2 7 7
1/2 1 5 5
1/7 1/5 1 1
1/7 1/5 1 1

⎤
⎥⎥⎦ (6.5)

Next, it is necessary to verify the consistency of the obtained multiplicative preference relation.
For this purpose, we can utilize the index of inconsistency originally proposed by Saaty (refer
again to Chapter 3). Since the maximal eigenvalue of the matrix given by (6.5) is 4.0159, the
index of inconsistency calculated with the use of (3.10) is

ν = (4.0159 − 4)

3
= 0.0053 (6.6)

Therefore, as ν is much lower than the threshold 0.1, the inconsistency level of (6.5)
is acceptable.
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6.1.5 Fuzzy Preference Relations

As discussed in Chapter 5, a fuzzy nonstrict preference relation R(Xk, Xl ) indicates the degree
to which the alternative Xk is at least as good as Xl , by means of its membership function
R(Xk, Xl ) : X × X → [0, 1].

When fuzzy preference relations are constructed by direct assessment, a DM is supposed
to indicate to what extent Xk is better than Xl by supplying a subjective value from the unit
interval. Different encoding schemes can be utilized to represent the preference strength of
one alternative over another. Here, we consider two schemes. One of them is reflected by a
nonreciprocal fuzzy preference relation (NRFPR) (Fodor and Roubens, 1994; Ekel, 2002),
which has a correspondence with the notion of fuzzy nonstrict preference relation associated
with the fuzzy preference structures studied in Chapter 5. Further, it is also coherent with a
rational approach for deriving fuzzy preference relations from the fuzzy estimates provided by
a DM to evaluate each alternative, which will be described below. The other encoding scheme
considered here is captured by an additive reciprocal fuzzy preference relation (ARFPR), which
is a fuzzy preference relation satisfying the property of additive reciprocity (see expression
(5.18)) (Tanino, 1984; Chiclana, Herrera, and Herrera-Viedma 1998; Chiclana, Herrera, and
Herrera-Viedma, 2001). Here, the NRFPR is denoted by RN(Xk, Xl ) and the ARFPR is
denoted by RR(Xk, Xl ).

The encoding scheme associated with the ARFPR can be summarized by the
following rules:

� RR(Xk, Xl ) = 0.5 means that Xk is indifferent to Xl ;
� 0.5 < RR(Xk, Xl ) ≤ 1 means that Xk is preferred to Xl ;
� 0 ≤ RR(Xk, Xl) < 0.5 means that Xl is preferred to Xk ;
� the entries of the main diagonal are filled with 0.5, as each element is equal to itself and, as

a result, indifferent to itself.

As a consequence of the additive reciprocity property, when a DM provides a value
for RR(Xk, Xl ), the value of RR(Xl, Xk) is automatically inferred as RR(Xl, Xk) = 1 −
RR(Xk, Xl ). Unfortunately, as far as we know, there are no preference elicitation procedures
to help a DM to directly define ARFPRs. In this way, the DM has to articulate preferences
based on his/her own intuition and capabilities of quantifying coherently preference strengths
with the rules presented above.

Furthermore, it is important to note that, similar to the multiplicative preference relation,
ARFPR also accommodates intransitivity. However, it is desirable to collect consistent fuzzy
preference relations, since, in general, the methods for the analysis of such relations also require
them to be consistent, in order to guarantee high-quality outcomes. The additive transitivity
property, which is given as (Tanino, 1984; Herrera-Viedma et al., 2004)

(RR(Xk, X j ) − 0.5) = (RR(Xk, Xl ) − 0.5) + (RR(Xl, X j ) − 0.5) ∀k, j, l ∈ {1, 2, . . . , n}
(6.7)

is one of the most intuitively appealing conditions for attesting the consistency of ARFPRs
in the context of individual decision-making. Chiclana, Herrera-Viedma, and Herrera (2004)
demonstrated that there is a meaningful connection between the multiplicative transitivity of
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multiplicative preference relations and the additive transitivity of ARFPRs. This connection
will be clarified in Section 6.3, when the conversion from multiplicative preference relations
into ARFPRs is considered.

Similar to the case of multiplicative preference relations, in the elicitation process of ARF-
PRs it is also necessary to collect n(n − 1)/2 pairwise comparisons. However, by enforcing
additive transitivity, it is also possible to collect just (n − 1) pairwise comparisons and estimate
the missing ones with the use of certain methods such as the one proposed by Herrera-Viedma
et al. (2004). If a DM provides all pairwise comparisons and they do not satisfy (6.7), it is
possible to identify which pairwise comparisons should be reviewed by the DM. Another
possibility consists of using an automated method to repair (enhance) the provided judgments
(without the need to ask the DM to review his/her judgments), by modifying them as slightly
as possible, just to guarantee an acceptable level of consistency.

Example 6.6. In the comparison of four apartments, namely X1, X2, X3, and X4, considered
for renting, by taking into account their respective location, a DM thinks that X3 and X2 are
the best situated alternatives, as both of them are in two adjacent buildings in a very familiar
neighborhood, which are very near to the DM’s office. Although X1 is on a very pleasant
street, it is considered the worst located alternative, because it is too far from the DM’s office.
X4 is considered an intermediary alternative, being on a calm and pleasant street, at a point
that is about 14 km (or about 25 minutes of driving time) away from his office.

In this way, the DM provided the following comparisons between the pairs of alternatives:

� RR(X1, X2) = 0 and RR(X2, X1) = 1, as X2 is extremely better than X1;
� RR(X1, X3) = 0 and RR(X3, X1) = 1, as X3 is extremely better than X1;
� RR(X1, X4) = 0.3 and RR(X4, X1) = 0.7, as X4 is to a moderate extent better than X1;
� RR(X2, X3) = 0.5 and RR(X3, X2) = 0.5, as X2 is as good as X3;
� RR(X2, X4) = 0.8 and RR(X4, X2) = 0.2, as X2 is strongly better than X4;
� RR(X3, X4) = 0.8 and RR(X4, X3) = 0.2, as X3 is strongly better than X4.

These judgments are summarized by the following ARFPR, which fortunately satisfies additive
transitivity (the reader is encouraged to confirm this as an exercise):

RR =

⎡
⎢⎢⎣

0.5 0 0 0.3
1 0.5 0.5 0.8
1 0.5 0.5 0.8

0.7 0.2 0.2 0.5

⎤
⎥⎥⎦ (6.8)

Now, let us focus on the NRFPR. Its encoding scheme satisfies the following conditions:

� if RN(Xk, Xl ) = 1 and RN(Xl , Xk) = 1, then Xk is indifferent to Xl ;
� if RN(Xk, Xl ) = 1 and RN(Xl , Xk) = 0, then Xk is strictly preferred to Xl ;
� if RN(Xk, Xl ) = 0 and RN(Xl , Xk) = 1, then Xl is strictly preferred to Xk ;
� if RN(Xk, Xl ) = 0 and RN(Xl , Xk) = 0, then Xk and Xl are not comparable;
� the entries of the main diagonal are filled with 1, due to the reflexivity of RN(Xk, Xl).
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Intermediate judgments among the situations described above are also allowed. They can be
interpreted as follows:

� if 0 ≤ RN(Xk, Xl ) < 1 and RN(Xl , Xk) = 1, then Xl is weakly preferred to Xk ;
� if RN(Xk, Xl ) = 1 and 0 ≤ RN(Xl , Xk) < 1, then Xk is weakly preferred to Xl ;
� if 0 ≤ RN(Xk, Xl ) < 1 and RN(Xl, Xk) = 0, then Xk is weakly preferred to Xl , and, at the

same time, Xk and Xl are to some degree considered incomparable;
� if RN(Xk, Xl ) = 0 and 0 ≤ RN(Xl, Xk) < 1, then Xl is weakly preferred to Xk and, at the

same time, Xk and Xl are to some degree considered incomparable.

Unfortunately, as in the case of ARFPRs, we cannot find in the current literature any preference-
eliciting procedure to help a DM to define NRFPRs. In this way, the DM has to express the
preferences based on his/her own abilities of quantifying preference strengths coherently with
the rules presented above. Particularly, in real-world situations, it may be difficult for the
DM to assign the values of RN(Xk, Xl ) and RN(Xl , Xk) that are coherent with his/her own
preferences. Indeed, one may find it easier to define ARFPRs rather than NRFPRs, due to the
fact that RR(Xl, Xk) can be automatically inferred from the value of RR(Xk, Xl ) by means
of the reciprocity of ARFPRs. In the case of NRFPRs, the value of RN(Xk, Xl ), a priori, does
not say much about the value of RN(Xl, Xk). However, it should be mentioned that, although
there is no such obvious relationship between the values of RN(Xk, Xl ) and RN(Xl, Xk),
there is another type of relationship between these two values. This relationship depends on
how the degrees of indifference and strict preference are derived from the values assigned to
RN(Xk, Xl ) and RN(Xl, Xk). Next, in Example 6.7, a DM expresses his/her preferences in
terms of a NRFPR. In Example 6.8, expressions (5.35) and (5.36) (which play an important
role in the analysis of decision-making problems, as will be shown in Chapter 7) are utilized to
extract the indifference degree and the strict preference degree from the judgments of nonstrict
preference provided by the DM. As will be shown in Example 6.8, those equations determine
a clear and intuitive relationship between the values of RN(Xk, Xl ) and RN(Xl, Xk).

Example 6.7. By considering the criterion of quality of construction (standard of finishing),
the four apartments for rent discussed in the previous example are now evaluated as follows:
a DM thinks that X1 definitely has the highest standard of finishing, exceeding expectations;
both X2 and X3 have a high standard of finishing; and X4 is average. In this way, the pairwise
comparisons provided by the DM are reflected by the NRFPR as follows:

� RN(X1, X2) = 1 and RN(X2, X1) = 0.5, as X1 is moderately better than X2;
� RN(X1, X3) = 1 and RN(X3, X1) = 0.5, as X1 is moderately better than X3;
� RN(X1, X4) = 1 and RN(X4, X1) = 0, as X1 is extremely better than X4;
� RN(X2, X3) = 1 and RN(X3, X2) = 1, as X2 is as good as X3;
� RN(X2, X4) = 1 and RN(X4, X2) = 0.3, as X2 is strongly better than X4;
� RN(X3, X4) = 1 and RN(X4, X3) = 0.3, as X3 is strongly better than X4.

These judgments are summarized by the following fuzzy preference relation, which satisfies
weak transitivity but does not satisfy the min-transitivity (the reader is invited to verify
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this observation):

RN =

⎡
⎢⎢⎣

1 1 1 1
0.5 1 1 1
0.5 1 1 1
0 0.3 0.3 1

⎤
⎥⎥⎦ (6.9)

Example 6.8. By applying expression (5.35) to (6.9), we obtain the level of strict preference
between the alternatives, which is reflected by the following fuzzy strict preference relation:

P =

⎡
⎢⎢⎣

0 0.5 0.5 1
0 0 0 0.7
0 0 0 0.7
0 0 0 0

⎤
⎥⎥⎦ (6.10)

When we apply (5.36) to (6.9), we obtain the level of indifference between the alternatives,
which is reflected by the following fuzzy indifference relation:

I =

⎡
⎢⎢⎣

1 0.5 0.5 0
0.5 1 1 0.3
0.5 1 1 0.3
0 0.3 0.3 1

⎤
⎥⎥⎦ (6.11)

By analyzing (6.9)–(6.11), we can conclude that, if (5.35) and (5.36) are utilized for defining
the fuzzy strict preference relation and the fuzzy indifference relation, respectively, then the
difference between RN(Xk, Xl ) and RN(Xl, Xk) reflects the level of strict preference between
the alternatives Xk and Xl . Further, the minimum value between RN(Xk, Xl ) and RN(Xl, Xk)
reflects the level of indifference between the alternatives Xk and Xl . In this way, in addition
to the desirable properties of (5.35) and (5.36), which are discussed in Chapter 5, these also
allow for a rather intuitive assignment of values to the NRFPRs.

Regarding the preference eliciting process of NRFPRs, it is also important to indicate that,
if the method utilized to analyze the fuzzy preference relations does not admit judgments of
incomparability between alternatives, a DM must reconsider all judgments from which such
incomparability arises. In addition to the judgment of full incomparability, RN(Xk, Xl ) = 0
and RN(Xl, Xk) = 0, a DM should also consider the situations of partial incomparability listed
above (these cases are also observable in Figure 5.6).

Finally, with reference to the consistency of NRFPRs, the min-transitivity, which is given by
(5.23), and the weak transitivity, which is given by (5.59), are the most common consistency
conditions, the former being a stricter condition than the latter.

6.2 Ordering of Fuzzy Quantities and the Construction of Fuzzy
Preference Relations

As indicated above, a rational (viewed from the fundamental as well as psychological points
of view) approach for deriving fuzzy preference relations is the use of the fuzzy estimates
provided by a DM to evaluate each alternative (the third preference format considered in the



P1: OTA/XYZ P2: ABC
c06 JWST012-Pedrycz September 21, 2010 9:16 Printer Name: Yet to Come

Construction of Fuzzy Preference Relations 167

previous section). In essence, the use of this approach is associated with the need to compare
or rank fuzzy numbers to choose the best (largest or smallest) or worst (smallest or largest)
among them.

Various works can be distinguished that were dedicated to the techniques for comparing
or ranking fuzzy numbers and published before 1998 (for instance, Jain, 1976; Baas and
Kwakernaak, 1977; Baldwin and Guild, 1979; Orlovsky, 1981; Yager, 1981; Dubois and
Prade, 1983; Lee and Li, 1988; Tseng and Klein, 1989; Chen and Hwang, 1992; Fortemps
and Roubens, 1996; Cheng, 1998; Horiuchi and Tamura, 1998).

The classification of the groups of techniques related to the ordering of fuzzy quantities can
be found in Chen and Hwang (1992). In particular, the following classes of techniques can
be distinguished:

� preference relations;
� use of fuzzy mean and spread characteristics;
� fuzzy scoring techniques;
� linguistic methods.

Among these classes, Horiuchi and Tamura (1998) consider the construction of fuzzy pref-
erence relations by means of pairwise comparisons as being the most practical and justified
approach. Taking this into account, it is worth distinguishing the fuzzy number ranking index
introduced by Orlovsky (Orlovsky, 1981), which is based on the concept of a membership
function of a generalized preference relation. Given that F(Xk) and F(Xl) are fuzzy sets re-
flecting the evaluation of the objective function F or the attribute F for the alternatives Xk and
Xl , respectively, the generalized preference relation between Xk and Xl is a fuzzy preference
relation whose membership function is defined as

η(F(Xk), F(Xl )) = sup
f (Xk ), f (Xl )∈F

min(F( f (Xk)), F( f (Xl)), E(F(Xk), F(Xl))) (6.12)

η(F(Xl), F(Xk)) = sup
f (Xk ), f (Xl )∈F

min(F(Xl), F(Xk), E(F(Xl ), F(Xk))) (6.13)

where f (Xk) and f (Xl) are real numbers reflecting the evaluation of the objective function
F or of the attribute F for the alternatives Xk and Xl ; F( f (Xk)) and F( f (Xl)) represent
the membership functions of the fuzzy sets F(Xk) and F(Xl) evaluated at f (Xk) and f (Xl),
respectively; E(F(Xk), F(Xl)) and E(F(Xl ), F(Xk))) are the membership functions of the cor-
responding fuzzy relations which respectively reflect the essence of the preferences of Xk over
Xl and of Xl over Xk (for instance, “more beautiful”, “more attractive”, “more flexible”, etc.).

When F can be measured on a numerical scale and the essence of preference behind relation
R is coherent with the natural order (≥) along the axis of measured values of F, then (6.12)
and (6.13), respectively, are reduced to the expressions

η(F(Xk), F(Xl)) = sup
f (Xk ), f (Xl )∈F

f (Xk )≥ f (Xl )

min(F( f (Xk)), F( f (Xl))) (6.14)

η(F(Xl), F(Xk)) = sup
f (Xk ), f (Xl )∈F

f (Xl )≥ f (Xk )

min(F( f (Xk)), F( f (Xl))) (6.15)

when F is a maximization criterion or attribute.
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Figure 6.4 Fuzzy values of the objective function F .

If F exhibits is a minimization criterion or attribute, then relationships (6.14) and (6.15)
must be modified. In this case, (6.14) stands for f (Xk) ≤ f (Xl) and (6.15) stands for
f (Xl) ≤ f (Xk).

Example 6.9. Assume we are given the alternatives X1 and X2 along with their respective
fuzzy values F(X1) and F(X2) of the objective function, as illustrated in Figure 6.4. With
the use of (6.14) and (6.15), we evaluate the degrees of the preferences of X1 over X2 and
of X2 over X1, in order to select the largest value between F(X1) and F(X2). For illustrative
purposes, Table 6.3 shows the corresponding membership functions, evaluated just for some
selected points distributed in the universe of discourse.

The formal application of (6.14) and (6.15) requires the construction of the Cartesian product
of f (X1) and f (X2), as presented in Table 6.4.

The entries located on the main diagonal (marked in bold) and above it are associated
with f (X1) ≥ f (X2). Taking this into account, according to (6.14), it is possible to find
η(F(X1), F(X2)) = 0.65. On the other hand, the entries on the main diagonal and below it
are associated with f (X2) ≥ f (X1). By applying (6.15), we obtain η(F(X2), F(X1)) = 1.
Therefore, we have that X2 is equally good (large) or better (larger) than X1.

It is worth noting that the maximum level of the intersection of F(X1) and F(X2), calculated
with the use of the min operator (which corresponds to 0.65, as can be seen in Figure 6.4),
allows one to define η(F(X2), F(X1)) = 1 and η(F(X1), F(X2)) = 0.65 without the need to
construct the Cartesian product of f (X1) and f (X2). Indeed, this rule of thumb for determining
η(F(X1), F(X2)) and η(F(X2), F(X1)) can be used in many practical situations.

The dependencies (6.14) and (6.15) agree with the Baas–Kwakernaak (Baas and Kwaker-
naak, 1977), Baldwin–Guild (Baldwin and Guild, 1979), and one of the Dubois-Prade (Dubois
and Prade, 1983) indices used for ranking fuzzy numbers.

Table 6.3 Membership functions of F(X1) and F(X2)

R 2 3 4 5 6 7 8 9 10

F( f (X1)) 0 0.50 1 0.85 0.65 0.50 0.35 0.15 0
F( f (X2)) 0 0.15 0.35 0.50 0.65 0.85 1 0.50 0
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Table 6.4 Cartesian product of f (X1) and f (X2)

F( f (X1))/ f (X1) → 0/2 0.50/3 1/4 0.85/5 0.65/6 0.50/7 0.35/8 0.15/9 0/10
F( f (X2))/ f (X2)
↓
0/2 0 0 0 0 0 0 0 0 0
0.15/3 0 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0
0.35/4 0 0.35 0.35 0.35 0.35 0.35 0.35 0.15 0
0.65/5 0 0.50 0.65 0.65 0.65 0.50 0.35 0.14 0
0.85/6 0 0.50 0.85 0.85 0.65 0.50 0.35 0.15 0
0.75/7 0 0.50 0.75 0.75 0.65 0.50 0.35 0.15 0
1/8 0 0.50 1 0.85 0.65 0.50 0.35 0.15 0
0.50/9 0 0.50 0.50 0.50 0.50 0.50 0.35 0.15 0
0/10 0 0 0 0 0 0 0 0 0

Example 6.10. We are given the alternatives X1 and X2 with fuzzy characterization of the
objective function F(X1) and F(X2), as presented in Figure 6.5. It is necessary to evaluate the
preference degrees of X1 over X2 and of X2 over X1 to select the largest value between F(X1)
and F(X2). For the sake of understanding, Table 6.5 shows the corresponding membership
functions, evaluated just for some points along the universe of discourse.

The Cartesian product of f (X1) and f (X2), constructed on the basis of (6.14) and (6.15),
is presented in Table 6.6.

It is not difficult to verify that η(F(X1), F(X2)) = 0.83 and η(F(X2), F(X1)) = 1.
Also, it is useful to note that, by applying (5.36) and (5.35) to obtain the level of indifference

and the level of strict preference between X1 and X2, we have that X1 is equivalent to X2 with
the degree computed as min(η(F(X1), F(X2)), η(F(X2), F(X1))) = 0.65 and that X2 is strictly
larger (better) than X1 with the degree max(η(F(X2), F(X1)) − η(F(X1), F(X2)), 0) =
0.35.

The reader should note that the generalized preference relation constructed by means of
(6.14) and (6.15) is coherent with the definition of NRFPR given in Section 6.2.

Figure 6.5 Comparison of alternatives with trapezoidal membership functions.
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Table 6.5 Membership function of F(X1) and F(X2)

R 1 2 3 4 5 6 7 8 9 10 11

F( f (X1)) 0 1 1 1 1 0.83 0.67 0.50 0.34 0.17 0
F( f (X2)) 0 0.17 0.34 0.50 0.67 0.83 1 0.67 0.34 0 0

Besides, by applying (5.36), we can conclude that F(X1) is equivalent or indifferent to
F(X2) with the degree min(η(F(X1), F(X2)), η(F(X2), F(X1))) = 0.83. At the same time,
with the use of (5.35), we obtain that F(X2) is strictly larger (better) than F(X1) with the
degree max(η(F(X2), F(X1)) − η(F(X1), F(X2)), 0) = 0.17.

The use of this approach for comparing fuzzy quantities as well as for constructing NRFPRs
is well founded. However, it is important to indicate that, in practice, there are cases where the
fuzzy quantities F(Xk) and F(Xl) have trapezoidal membership functions that are located in
such a way that it is not possible to distinguish Xk from Xl . For instance, we can observe that,
for the situation shown in Figure 6.6, the alternatives are indistinguishable since

η(F(X1), F(X2)) = η(F(X2), F(X1)) = α (6.16)

As will be further discussed in Chapter 7, in such situations, the algorithms applied to solve
the problems with fuzzy coefficients do not allow one to obtain unique solutions because they
“stop” when conditions like (6.16) arise (see Examples 7.1 and 7.2 in Chapter 7). This should
be considered to be a natural consequence of the existence of decision uncertainty regions,
produced by a combination of the uncertainty and the relative stability of optimal solutions
(Ekel and Popov, 1985; Popov and Ekel, 1987). Under these circumstances, other indices may
be used as additional means for the ranking of fuzzy numbers.

Table 6.6 Cartesian product of f (X1) and f (X2)

F( f (X1))/ f (X1)→ 0/1 1/2 1/3 1/4 1/5 0.83/6 0.67/7 0.50/8 0.34/9 0.17/10 0/11
F( f (X2))/ f (X2)
↓
0/1 0 0 0 0 0 0 0 0 0 0 0
0.17/2 0 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0
0.34/3 0 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.17 0
0.50/4 0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.34 0.17 0
0.67/5 0 0.67 0.67 0.67 0.67 0.67 0.67 0.50 0.34 0.17 0
0.83/6 0 0.83 0.83 0.83 0.83 0.83 0.67 0.50 0.34 0.17 0
1/7 0 1 1 1 1 0.83 0.67 0.50 0.34 0.17 0
0.67/8 0 0.67 0.67 0.67 0.67 0.67 0.67 0.50 0.34 0.17 0
0.34/9 0 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.17 0
0/10 0 0 0 0 0 0 0 0 0 0 0
0/11 0 0 0 0 0 0 0 0 0 0 0
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Figure 6.6 Comparison of alternatives with trapezoidal membership functions.

The reviews of techniques which have been developed for ranking fuzzy numbers can be
found in Dubois and Prade (1999) and Wang and Kerre (2001). These studies cover the analysis
of the fuzzy ranking indices proposed before 1998 (among more recent works in this field, it is
possible to distinguish, for instance, Raj and Kumar, 1999; Modarres and Sadi-Nezhad, 2001;
Facchinetti, 2002; Tran and Duckstein, 2002; Liu and Han, 2005; Abbasbandy and Asady,
2006; Wang and Lee, 2008; Abbasbandy and Hajjari, 2009; Wang and Luo, 2009).

Wang and Kerre (2001) enumerate more than 35 fuzzy number ranking indices and conclude
the following: unlike the case of real numbers, fuzzy quantities have no natural order. The
basic principle behind the methods for ordering fuzzy quantities consists of converting each
fuzzy quantity into a real number and realizing the comparison of fuzzy quantities on the basis
of the resulting real numbers. However, each approach for realizing such a conversion focuses
on an intricate aspect inherent to fuzzy quantities. As a consequence, each approach suffers
from some weaknesses associated with the loss of information inherent to the conversion of
a fuzzy quantity to a single real number. Wang and Kerre (2001) support this point of view
by citing Freeling (1980): “by reducing the whole of our analysis to a single number, we are
losing much of the information we have purposely been keeping throughout calculations”.
Authors like Cheng (1998) and Lee-Kwang (1999) share this opinion as well. Cheng (1998)
also indicates that many of the indices produce different rankings for the same problem. Other
authors (Cheng, 1998; Ekel, Pedrycz, and Schinzinger, 1998; Lee-Kwang, 1999; Chen and Lu,
2002) underline that fuzzy number ranking indices occasionally result in choices which seem
not to be coherent with intuition. Chen and Lu (2002) indicate that the majority of methods
for the ranking of fuzzy numbers assume that membership functions of fuzzy numbers are
normalized. However, this limitation is not always adequate. Tseng and Klein (1989) indicate
that the ranking methods may not reflect the preferences or interests of the DMs. Further, Chen
and Klein (1997) indicate that many techniques of ordering help one only to observe an order
among fuzzy quantities; however, they do not permit one to measure the degree of dominance
among them, requiring a significant volume of calculations. Finally, it is necessary to mention
that the majority of indices for the ranking of fuzzy quantities has been proposed with the
aspiration for obligatorily distinguishing the alternatives, which is often questionable because
the uncertainty of information creates inherent decision uncertainty regions. Taking this into
account, the possibility of identifying situations where the compared alternatives cannot be
distinguished should be considered as a merit of the fuzzy number ranking index based on the
underlying essence of a membership function of a generalized preference relation.
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Taking all this into consideration, the fuzzy number ranking index based on the idea of
a membership function of a generalized preference relation is used here for ordering fuzzy
quantities and for the construction of fuzzy preference relations.

6.3 Transformation Functions and their Use for Converting Different
Preference Formats into Fuzzy Preference Relations

In individual as well as in group decision-making, when different preference formats are
utilized, the information must be made uniform under adequate transformation functions,
before being analyzed. These transformation functions are useful in converting heterogeneous
preference information, which may be qualitative or quantitative, two valued or fuzzy, ordered
or nonordered, ordinal or cardinal, and even based on different types of scales (including
ordinal, interval, and ratio scales), into fuzzy preference relations, which form a more general
preference model, since it can be defined on all those types of scales.

In the previous section, it was shown how fuzzy preference relations can be constructed from
the evaluation of the alternatives in terms of fuzzy estimates. Now, we present ways of deriving
fuzzy preference relations from the evaluation of the alternatives expressed using other pref-
erence formats rather than fuzzy estimates. First, we present some transformation functions
for converting the preference information from different formats, namely the ordering of the
alternatives, cardinal utility values, multiplicative preference relations, and NRFPR, into the
ARFPR format. The reader should be aware that it is not our intention to consider all the exist-
ing transformation functions. Here, some selected transformation functions from the current
literature are presented and studied. Afterward, we derive from those selected transformation
functions other transformation functions, which can be utilized for converting the preference
information from those different formats (including the ARFPR) into the NRFPR format.

6.3.1 Transformation Functions for ARFPR

Before proceeding, it is worth mentioning that all transformation functions presented here
for converting information from the different formats into the ARFPR preserve the weak
transitivity of the original information. In this way, the ARFPRs derived from an ordered array
or from a utility function, with the use of the transformation functions presented next, always
satisfy weak transitivity. On the other hand, the ARFPRs derived from the NRFPR format and
the multiplicative preference relation format, with the use of the transformation functions to
be presented next, verify the weak transitivity as long as the collected pairwise judgments also
satisfy weak transitivity.

6.3.1.1 Ordered Array → ARFPR

When the preferences are expressed by means of an ordered array O = [ o1 . . . on ], it is
possible to convert this array into an ARFPR with the use of any function H (x, y) : N × N →
[0, 1] satisfying the following conditions:

� H (ok, ol ) must be a nonincreasing function of the first argument and a nondecreasing
function of the second argument;

� H (ok, ok) = 0.5,∀k ∈ {1, 2, . . . ,n};
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� H (ok, ol ) > 0.5, ifok < ol ,∀k, l ∈ {1, 2, . . . ,n};
� additive reciprocity: H (ok, ol ) + H (ol , ok) = 1,∀k, l ∈ {1, 2, . . . ,n}.

Here, we consider the following transformation function, which in addition to satisfying
those conditions produces ARFPRs that meet the additive transitivity (Chiclana, Herrera, and
Herrera-Viedma, 1998):

RR(Xk, Xl ) = H1(ok, ol ) = 1

2

(
1 + ol − ok

n − 1

)
(6.17)

Example 6.11. Given a set of five alternatives, consider that their rank ordering is given by
O = [ 2 1 4 5 3 ] according to the preferences of an expert. For instance, if we apply (6.17) to
the pair X1 and X2, we arrive at the following result:

RR(X1, X2) = 1

2

(
1 + 1 − 2

4

)
= 3

8
(6.18)

By applying (6.17) to the other pairs of alternatives, the following ARFPR can be constructed:

RR =

⎡
⎢⎢⎢⎢⎣

0.5 0.375 0.75 0.875 0.625
0.625 0.5 0.875 1 0.75
0.25 0.125 0.5 0.625 0.375

0.125 0 0.375 0.5 0.25
0.375 0.25 0.625 0.75 0.5

⎤
⎥⎥⎥⎥⎦

(6.19)

One can see that (6.19) is coherent with the array provided by a DM. For instance, the second
row and the second column of (6.19) reflect the fact that X2 is the best ranked alternative as
RR(X2, Xk) > 0.5 and RR(Xk, X2) < 0.5, for k ∈ {1, 3, 4, 5}. Further, the fourth line and the
fourth column of (6.19) indicate that X4 is the worst ranked alternative, as RR(X4, Xk) < 0.5
and RR(Xk, X4) > 0.5, for k ∈ {1, 2, 3, 5}.

6.3.1.2 Utility → ARFPR

Now, let us consider that the DM’s opinions are expressed by means of utility values. From
now on, the utility value evaluated for each alternative belonging to X will be represented
as the array U = [ u1 . . . un ], in which the utility value associated with each alternative
satisfies uk = U (Xk),∀Xk ∈ X. In general, utility values normalized in the interval [0, 1] can
be transformed into an ARFPR by means of any function H (x, y) : [0, 1] × [0, 1] → [0, 1]
satisfying the following conditions:

� H (uk, ul ) is a nondecreasing function of the first argument and a nonincreasing function of
the second argument;

� H (uk, uk) = 0.5,∀k ∈ {1, 2, . . . ,n};
� H (uk, 0) = 0,∀k ∈ {1, 2, . . . ,n}, in order to reflect the fact that, if a DM judges that the

utility value of an alternative is zero (which means that this alternative does not satisfy the
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given criterion at all), then the other alternative should be preferred to that alternative with
the maximum degree of preference (Chiclana, Herrera, and Herrera-Viedma, 1998);

� H (uk, ul ) > 0.5, if uk > ul,∀k, l ∈ {1, 2, . . . ,n};
� additive reciprocity: H (uk, ul ) + H (ul, uk) = 1,∀k, l ∈ {1, 2, . . . ,n}.

Next, we present some particular transformation functions which verify those conditions for
utility values assessed on different types of scales.

If the utility values are assessed on a ratio scale, the ARFPR can be derived (Tanino, 1984;
Chiclana, Herrera, and Herrera-Viedma, 1998) from this array with the use of the following
relationships:

RR(Xk, Xl) = H2(uk, ul ) =
⎧⎨
⎩

uk

uk + ul
if uk + ul 
= 0

0.5 if uk = ul = 0
(6.20)

RR(Xk, Xl) = H3(uk, ul ) =

⎧⎪⎨
⎪⎩

u2
k

u2
k + u2

l

if uk + ul 
= 0

0.5 if uk = ul = 0

(6.21)

Note that both (6.20) and (6.21) define ARFPRs that do not satisfy additive transitiv-
ity, but satisfy the multiplicative one. The multiplicative transitivity, as stated in (6.4) for
the multiplicative preference relation, can be written for the case of ARFPR as follows
(Tanino, 1984):

RR(Xk, X j )

RR(X j , Xk)
= RR(Xk, Xl )

RR(Xl, Xk)
· RR(Xl, X j )

RR(X j , Xl )
∀ j, k, l ∈ {1, 2, . . . , n} (6.22)

Substitution of (6.20) into (6.22) yields

(
uk

uk + u j

)(
uk + u j

u j

)
=

(
uk

uk + ul

) (
uk + ul

ul

) (
ul

ul + u j

) (
ul + u j

u j

)
(6.23)

The reader can easily confirm that this relationship is valid for every Xk, X j , Xl ∈ X. A similar
development can be carried out for (6.21). The notion of multiplicative transitivity may be
useful to verify the consistency of the DM’s preferences, if the fuzzy preference relation is
constructed in such a way that the ratio RR(Xk, Xl )/RR(Xl, Xk) reflects how many times Xk

is preferred to Xl (Tanino, 1984).
As will be shown in the following example, the main difference between (6.20) and (6.21)

lies in the fact that the strength of nonstrict preference RR(Xk, Xl ) calculated by means of
(6.21) tends to be farther from the indifference judgment than the corresponding strength of
nonstrict preference calculated by means of (6.20).
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Example 6.12. By applying (6.20) and (6.21) to the utility array U = [ 0.2 0.4 0.1 0.3 ],
we obtain

RR =

⎡
⎢⎢⎣

0.5 0.333 0.667 0.4
0.667 0.5 0.8 0.571
0.333 0.2 0.5 0.25
0.6 0.428 0.75 0.5

⎤
⎥⎥⎦ (6.24)

RR =

⎡
⎢⎢⎣

0.5 0.2 0.8 0.308
0.8 0.5 0.941 0.64
0.5 0.059 0.5 0.1

0.692 0.36 0.9 0.5

⎤
⎥⎥⎦ (6.25)

As can be seen, both (6.24) and (6.25) are consonant with the utility array. However, in
(6.25), more than in (6.24), the strength of nonstrict preference of each alternative over another
tends to be more distant from the judgment of indifference, being much higher or much lower
than 0.5.

Given a vector of cardinal utility values U , defined on an interval scale normalized in [0,1],
the ARFPR can be derived from this vector by means (Tanino, 1984; Chiclana, Herrera, and
Herrera-Viedma, 1998) of the following expression:

RR(Xk, Xl ) = H4(uk, ul) = 1

2
(1 + uk − ul) (6.26)

It should be mentioned that an attractive property of (6.26) is that it constructs ARFPRs that
necessarily satisfy additive transitivity.

Example 6.13. Let us recall the utility values from Example 6.2, that is, U = [ 1 0.9 0 0.2 ].
By applying (6.26), we obtain the following fuzzy preference relation:

RR =

⎡
⎢⎢⎣

0.5 0.55 1 0.9
0.45 0.5 0.95 0.85

0 0.05 0.5 0.4
0.1 0.15 0.6 0.5

⎤
⎥⎥⎦ (6.27)

It is worth noting that (6.27) is coherent with the vector assessed by the DM. For instance, the
first line and the first column of matrix RR suggest that alternative X1 is the best alternative,
since RR(X1, Xk) > 0.5 and RR(Xk, X1) < 0.5 for k = 2, . . . , 4. On the other hand, the third
line and the third column of RR indicate that X3 is the worst alternative, as RR(X3, Xk) < 0.5
and RR(Xk, X3) > 0.5 for k ∈ {1, 2, 4}.

6.3.1.3 Multiplicative Preference Relation → ARFPR

If the DM’s preferences are defined in terms of a multiplicative relation M(Xk, Xl ),
∀(Xk, Xl ) ∈ X × X, expressed by means of the ratio scale proposed by Saaty (see Table 3.1),
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the ARFPR can be obtained by means of any function H (x) : [1/9, 9] → [0, 1] satisfying
the following conditions:

� H (M(Xk, Xl )) should be a nondecreasing function;
� H (1) = 0.5;
� H (9) = 1;
� H (1/9) = 0;
� additive reciprocity: H (x) + H (1/x) = 1, ∀x ∈ [1/9, 9].

Chiclana, Herrera, and Herrera-Viedma (2001) proposed the following transformation function
verifying those conditions:

RR(Xk, Xl ) = H5(M(Xk, Xl )) = 1

2

(
1 + log9 M(Xk, Xl)

)
(6.28)

The transformation function (6.28) can also be generalized to make it possible to use other
ratio scales:

RR(Xk, Xl ) = H6(M(Xk, Xl )) = 1

2

(
1 + logm M(Xk, Xl )

)
(6.29)

where m is the upper limit and 1/m is the lower limit of the ratio scale. Note that, if the
original multiplicative preference relation satisfies multiplicative transitivity, then both (6.28)
and (6.29) produce ARFPRs that verify the property of additive transitivity. A proof of this
property can be found in Herrera-Viedma et al. (2004).

If M satisfies multiplicative transitivity, then we have that

M(Xk, X j ).M(X j , Xl ).M(Xl , Xk) = 1 ∀Xk, X j , Xl ∈ X (6.30)

By taking logarithms to base m of both sides of (6.30), we obtain for all Xk, X j , Xl ∈ X

logm M(Xk, X j ) + logm M(X j , Xl ) + logm M(Xl, Xk) = 0 (6.31)

By adding 3 and dividing by 2 on both sides of (6.31), we obtain

1

2
(1 + logm M(Xk, X j )) + 1

2
(1 + logm M(X j , Xl )) + 1

2
(1 + logm M(Xl, Xk)) = 3

2
(6.32)

Taking (6.29) into account, (6.32) can be rewritten as follows:

RR(Xk, X j ) + RR(X j , Xl ) + RR(Xl, Xk) = 3

2
(6.33)

The reader can easily verify that (6.33) corresponds to the additive transitivity condition given
by (6.7).
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Example 6.14. Let us convert the multiplicative preference relation (6.5), assessed in Example
6.5, into a fuzzy preference relation by means of (6.28):

RR =

⎡
⎢⎢⎣

0.5 0.658 0.942 0.943
0.342 0.5 0.866 0.866
0.057 0.134 0.5 0.5
0.057 0.134 0.5 0.5

⎤
⎥⎥⎦ (6.34)

The ARFPR given by (6.34) is coherent with (6.5). For instance, the reader can see in (6.34)
that X1 is better than X2 and is much better than X3 and X4, or that X3 is as good as X4.

6.3.1.4 NRFPR → ARFPR

When the DM’s preferences are defined in terms of the NRFPR given in Section 6.2, it is
possible to convert it to the ARFPR by means of any function H (RN(Xk, Xl ), RN(Xl, Xk)) :
[0, 1] × [0, 1] → [0, 1] verifying the following conditions:

� H (x, y) should be a nondecreasing function of the first argument and a nonincreasing
function of the second argument;

� H (1, 1) = 0.5;
� H (1, 0) = 1;
� H (1, x) > 0.5, if x < 1, ∀x [0, 1];
� H (0, 1) = 0;
� H (x, 1) < 0.5, if x < 1,∀x [0, 1];
� additive reciprocity: H (x, y) + H (y, x) = 1,∀x, y ∈ [0, 1].

It should be mentioned that we do not consider here the judgments of incomparability be-
tween two alternatives, since such judgments of incomparability (that is, any pair of judgments
verifying RN(Xk, Xl ) < 1 and RN(Xl , Xk) < 1) are not portrayed by the encoding scheme
of ARFPRs. In general, only the judgments of total incomparability (which correspond to the
extreme situation in which RN(Xk, Xl ) = RN(Xl, Xk) = 0) are (in a certain way) handled
by the encoding scheme of the ARFPR. A priori, this type of judgment can be represented
in an ARFPR as missing values. When a DM cannot compare two alternatives, in the first
moment, the corresponding entries in the matrix of the ARFPR can be left unfilled. Later,
those missing numbers are estimated by using certain methods based on the assumption of
additive transitivity of the ARFPR (Herrera-Viedma et al., 2007) and, as a consequence, the
corresponding judgments of incomparability disappear.

Here we consider the following three transformation functions verifying those conditions
presented above:

RR(Xk, Xl ) = H7(RN(Xk, Xl ), RN(Xl, Xk)) = 1

2
(1 + RN(Xk, Xl ) − RN(Xl , Xk)) (6.35)

RR(Xk, Xl ) = H8(RN(Xk, Xl ), RN(Xl, Xk))

= RN(Xk, Xl )

RN(Xk, Xl ) + RN(Xl, Xk)
= 1

1 + RN(Xl, Xk)

RN(Xk, Xl)

(6.36)
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RR(Xk, Xl ) = H9(RN(Xk, Xl ), RN(Xl, Xk))

= RN(Xk, Xl )2

RN(Xk, Xl)2 + RN(Xl, Xk)2
= 1

1 +
(

RN(Xl, Xk)

RN(Xk, Xl)

)2 (6.37)

The selection of an adequate transformation function among (6.35), (6.36), and (6.37)
(the construction of (6.36) was proposed by Queiroz, 2009) depends upon whether the ra-
tio RN(Xk, Xl )/RN(Xl, Xk) or the difference RN(Xk, Xl ) − RN(Xl, Xk) is meaningful. The
transformation function given by (6.35) may be utilized when the difference RN(Xk, Xl ) −
RN(Xl, Xk) is meaningful. On the other hand, both (6.36) and (6.37) may be utilized in
situations in which the ratio RN(Xk, Xl )/RN(Xl, Xk) is meaningful. For practical purposes,
the main difference between (6.36) and (6.37) lies in the fact that the strength of nonstrict
preference RR(Xk, Xl ) calculated by means of (6.37) tends to be farther from the indiffer-
ence judgment than the corresponding strength of nonstrict preference calculated by means
of (6.36).

Another important aspect that must be stressed here is that the ARFPRs obtained with the use
of (6.36) and (6.37) satisfy multiplicative transitivity (see (6.22)) as long as the corresponding
NRFPR also satisfies multiplicative transitivity. Indeed, the substitution of (6.36) (or of (6.37))
into (6.22) yields

(
RN(Xk, X j )

RN(Xk, X j ) + RN(X j , Xk, )

)
×

(
RN(Xk, X j ) + RN(X j , Xk)

RN(X j , Xk)

)
=

(
RN(Xk, Xl )

RN(Xk, Xl ) + RN(Xl , Xk)

)

×
(

RN(Xk, Xl ) + RN(Xl , Xk)

RN(Xl , Xk)

)
×

(
RN(Xl , X j )

RN(Xl , X j ) + RN(X j , Xl )

)
×

(
RN(Xl , X j ) + RN(X j , Xl )

RN(X j , Xl )

)

(6.38)

which can be easily simplified as the following expression of multiplicative transitivity for
NRFPRs:

RN(Xk, X j )

RN(X j , Xk)
= RN(Xk, Xl )

RN(Xl , Xk)

RN(Xl , X j )

RN(X j , Xl )
(6.39)

On the other hand, it should be mentioned that the ARFPRs obtained with the use of (6.35)
satisfy additive transitivity only if the corresponding NRFPR satisfies the following condition:

(
RN(Xk, X j ) − RN(X j , Xk)

) + (
RN(X j , Xl) − RN(Xl, X j )

)

+ (RN(Xk, Xl ) − RN(Xl, Xk)) = 0 (6.40)

It can be seen that by substituting (6.35) into (6.7) (which corresponds to the additive transi-
tivity), we obtain (6.41), which can be reduced to (6.40), as the reader can easily verify:

(
1 + RN(Xk, X j ) − RN(X j , Xk)

) + (
1 + RN(X j , Xl) − RN(Xl, X j )

)

+ (1 + RN(Xk, Xl ) − RN(Xl, Xk)) = 3 (6.41)

It is worth noting that, in applications where (5.35) is utilized to obtain the level of strict pref-
erence of one alternative over the other, the difference between RN(Xk, Xl ) and RN(Xl, Xk)
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reflects the level of strict preference of one alternative over the other, as discussed in Example
6.8. In this case, (6.41) can be interpreted as: the level of strict preference of Xk over X j added
to the level of strict preference of X j over Xl should be equal to the level of strict preference
of Xk over Xl .

Example 6.15. Let us consider that, in Example 6.7, the DM provided the NRFPR given by
(6.9), in such a way that the differences RN(Xk, Xl ) − RN(Xl, Xk) have a meaning. In such
a case, in order to preserve such a meaning, the conversion from NRFPR to ARFPR can be
made by means of (6.35), which produces the following ARFPR:

RR =

⎡
⎢⎢⎣

0.5 0.75 0.75 1
0.25 0.5 0.5 0.85
0.25 0.5 0.5 0.85

0 0.15 0.15 0.5

⎤
⎥⎥⎦ (6.42)

As can be seen, (6.42) is compatible with (6.9). For instance, in (6.42), it is indicated that X1

is the best alternative, as RR(X1, Xk) > 0.5 and RR(Xk, X1) < 0.5, for k ∈ {2, 3, 4}. Further,
the fourth row and the fourth column of matrix RR indicate that X4 is the worst alternative,
as RR(X4, Xk) < 0.5 and RR(Xk, X4) > 0.5, for k ∈ {1, 2, 3}.

Example 6.16. Now let us consider that the DM provided values for the following NRFPR in
such a way that their ratios are meaningful:

RN =
⎡
⎣

1 1 1
1/2 1 1
1/6 1/3 1

⎤
⎦ (6.43)

In this way, for instance, the ratio

RR(X1, X2)

RR(X2, X1)
= 1

0.5
= 2

means that X1 is two times better than X2. In such a case, in order to preserve the essence
of these comparisons in performing the conversion from the NRFPR to the ARFPR, this
conversion may be made by means of (6.36) or (6.37). The use of (6.36) to convert the NRFPR
(6.9) into an ARFPR yields

RR =
⎡
⎣

0.5 0.667 0.857
0.333 0.5 0.75
0.143 0.250 0.5

⎤
⎦ (6.44)

The use of (6.37), rather than (6.36), produces the following ARFPR:

RR =
⎡
⎣

0.5 0.8 0.972
0.2 0.5 0.9

0.027 0.1 0.5

⎤
⎦ (6.45)
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As can be seen, both (6.44) and (6.45) are compatible with (6.43). For instance, in (6.44) and
(6.45), it is indicated that X1 is the best alternative, as RR(X1, Xk) > 0.5 and RR(Xk, X1) <

0.5, for k ∈ {2, 3}. Further, the third line and the third column of both (6.44) and (6.45) indicate
that X3 is the worst alternative, as RR(X3, Xk) < 0.5 and RR(Xk, X3) > 0.5, for k ∈ {1, 2}.

6.3.2 Transformation Functions for NRFPRs

It is worth indicating that the transformation functions to be presented next do not necessarily
produce NRFPRs that verify the property of min-transitivity. However, similar to the trans-
formation functions presented above, all transformation functions below preserve the weak
transitivity of the original preference information. In this way, the NRFPR derived from an
ordered array or from a utility function, with the use of those transformation functions, always
satisfies weak transitivity. On the other hand, the NRFPR derived from an ARFPR or from a
multiplicative preference relation, with the use of those transformation functions, only verifies
weak transitivity if the collected pairwise judgments also satisfy weak transitivity.

6.3.2.1 ARFPR → NRFPR

Given the DM’s preferences defined in terms of the ARFPR, it is possible to convert it to the
NRFPR by means of the following three transformation functions:

RN(Xk, Xl ) = H10(RR(Xk, Xl ), RR(Xl , Xk))

=
{

1 + RR(Xk, Xl ) − RR(Xl, Xk) if RR(Xk, Xl) < 0.5
1 if RR(Xk, Xl) ≥ 0.5

(6.46)

RN(Xk, Xl ) = H11(RR(Xk, Xl ), RR(Xl , Xk))

=
⎧⎨
⎩

RR(Xk, Xl )

RR(Xl , Xk)
if RR(Xk, Xl ) < 0.5

1 if RR(Xk, Xl ) ≥ 0.5
(6.47)

RN(Xk, Xl ) = H12(RR(Xk, Xl ), RR(Xl , Xk))

=

⎧⎪⎨
⎪⎩

(
RR(Xk, Xl )

RR(Xl, Xk)

)0.5

if RR(Xk, Xl ) < 0.5

1 if RR(Xk, Xl ) ≥ 0.5

(6.48)

Expressions (6.46)–(6.48) (the construction of (6.47) was proposed by Queiroz, 2009) rep-
resent the transformation functions that allow the reverse conversions of (6.35)–(6.37),
respectively. The transformation function (6.46) may be utilized when the ARFPR is defined
in such a way that the difference RR(Xk, Xl ) − RR(Xl, Xk) makes sense. The transformation
functions (6.47) and (6.48) may be utilized when the ARFPR is defined in such a way that the
ratio RR(Xk, Xl )/RR(Xl , Xk), in the sense that it indicates how many times Xk is preferred
to Xl .
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Recalling from the previous section that the indifference judgment in those NRFPRs is
reflected by the pair of judgments RN(Xk, Xl ) and RN(Xl, Xk) being equal to one, the main
difference between (6.47) and (6.48) is associated with the fact that each pairwise judgment
RN(Xk, Xl ) produced by (6.48) tends to be closer to the indifference judgment than each
corresponding pairwise judgment produced with the use of (6.47), as can be confirmed through
the following example.

Example 6.17. The use of (6.46) to convert the ARFPR (6.42) into a NRFPR yields

RN =

⎡
⎢⎢⎣

1 1 1 1
0.5 1 1 1
0.5 1 1 1
0 0.3 0.3 1

⎤
⎥⎥⎦ (6.49)

As can be seen, (6.49) perfectly matches (6.9), which is the NRFPR from which the ARFPR
given by (6.42) was converted with the use of (6.35), in Example 6.15. In this way, one can
note that (6.46) performs the reverse operation of (6.35).

Example 6.18. The use of (6.47) to convert the ARFPR given by (6.44) into a NRFPR yields

RN =
⎡
⎣

1 1 1
0.499 1 1
0.167 0.333 1

⎤
⎦ (6.50)

The use of (6.48), rather than (6.47), produces the following NRFPR:

RN =
⎡
⎣

1 1 1
0.706 1 1
0.408 0.577 1

⎤
⎦ (6.51)

As can be seen, both (6.50) and (6.51) are compatible with (6.44), as well as with the preference
relation given by (6.43), from which (6.44) was converted (refer to Example 6.16). For instance,
the first line in both (6.50) and (6.51) is entirely filled with ones, which means that alternative
X1 is not worse than the remaining alternatives. Further, the third column in both (6.50) and
(6.51) is also entirely filled with ones, which means that X3 is not better than any other
alternative.

Example 6.19. Let us complete the reverse operation on (6.50), by applying (6.36) to (6.50),
in order to convert it back to the NRFPR from which (6.50) was converted (refer to Example
6.16). For instance, if we apply (6.36) to the pair (X1, X2), we obtain the following results:

RR(X1, X2) = H8(1, 0.499) = 1

1 + 0.499
= 0.667 (6.52)

RR(X2, X1) = H8(0.499, 1) = 0.499

0.499 + 1
= 0.333 (6.53)
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By comparing (6.52)–(6.53) to their respective entries in the matrix (6.44), we can see that
they match perfectly. If we proceed by applying (6.36) to the remaining pairs of alternatives,
we obtain the ARFPR given by (6.44), as expected.

Next, we present some transformation functions for converting the preference information
expressed in terms of the different formats directly into the NRFPR format, by substituting,
into (6.46), (6.47), or (6.48), the expressions presented above for conversion from the different
preference formats into an ARFPR. The choice between using transformation functions based
on (6.46), (6.47), or (6.48) should consider the following aspects: (6.46) may be utilized when
the difference RR(Xk, Xl ) − RR(Xl, Xk) has a meaning, which we want to preserve. Both
(6.47) and (6.48) may be utilized when the ratio RR(Xk, Xl )/RR(Xl , Xk) has a meaning that
should be preserved in the conversion. Further, in the selection between (6.47) and (6.48), it
should be considered that (6.48) may quantify the preference strength associated with each
pairwise comparison, in such a way that it tends to be nearer to an indifference judgment. In
contrast, (6.47) may quantify the preference strength associated with each pairwise compar-
ison, in such a way that it tends to be nearer to a strict preference judgment. Therefore, in
the choice between using one or the other transformation function, it is important to consider
the DM’s desire of accentuating, or not, his/her preference strengths for one alternative over
the other. The reader can confirm this feature in Example 6.18.

6.3.2.2 Ordered Array → NRFPR

Let us begin by considering the preferences expressed in purely ordinal format. In order to
convert preferences expressed in terms of an ordered array into a NRFPR, we can use the
transformation function given by

RN(Xk, Xl ) = H13(ok, ol ) =
⎧⎨
⎩

1

2
+ ol − ok

2(n − 1)
if ok > ol

1 if ok ≤ ol

(6.54)

which is derived by substituting (6.17) into (6.46). The advantage of using (6.17) combined
with (6.46) and not with (6.47) or (6.48) is associated with the need to preserve the meaning
of the differences ol − ok among the positions of two alternatives in the conversion from the
ordered array into the NRFPR.

Example 6.20. By applying (6.54) to convert the ordered array considered in Example 6.1
into a NRFPR, we obtain

RN =

⎡
⎢⎢⎢⎢⎣

1 0.375 1 1 1
1 1 1 1 1

0.25 0.125 1 1 0.375
0.125 0 0.375 1 0.25
0.375 0.25 1 1 1

⎤
⎥⎥⎥⎥⎦

(6.55)

It is worth noting that (6.55) is coherent with the ordered array. For instance, the fact that the
second row is entirely filled with ones indicates that X2 is not worse than any other alternative;
and the fact that the fourth column is entirely filled with ones indicates that X4 is not better
than any other alternative under consideration.
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6.3.2.3 Utility → NRFPR

The preferences given in terms of a vector of utilities defined on a ratio scale, normalized in
the interval [0, 1], can be converted into a NRFPR by means of the following expressions:

RN(Xk, Xl ) = H14(uk, ul ) =
⎧⎨
⎩

uk

ul
if uk < ul

1 if uk ≥ ul

(6.56)

RN(Xk, Xl ) = H15(uk, ul ) =

⎧⎪⎨
⎪⎩

(
uk

ul

)0.5

if uk < ul

1 if uk ≥ ul

(6.57)

RN(Xk, Xl ) = H16(uk, ul ) =

⎧⎪⎨
⎪⎩

(
uk

ul

)2

if uk < ul

1 if uk ≥ ul

(6.58)

Expressions (6.56) and (6.57), respectively, are obtained by substituting (6.20) into (6.47)
and (6.48). Expression (6.58) is obtained by the substitution of (6.21) into (6.47). Note that the
substitution of (6.21) into (6.48) also corresponds to (6.45). In order to preserve the meaning
of the ratio uk/ul in the conversion from the utility values into a NRFPR, substitution of (6.20)
or (6.21) into (6.47) or (6.48) is preferable to substitution of (6.20) or (6.21) into (6.46).

As can be confirmed by the following example, in the selection of a transformation function
among (6.56), (6.57), or (6.58), it is important to consider that (6.57) produces pairwise
judgments tending somewhat more to an indifference judgment than the other transformation
functions do. In contrast, (6.58) produces pairwise judgments tending somewhat more to a
strict preference than the other transformation functions do. Finally, (6.56) can be considered
as an intermediate case between (6.57) and (6.58). This is a consequence of the fact that the
value of R(Xk, Xl), when uk < ul , can be given by one of the ratios satisfying

(
uk

ul

)2

︸ ︷︷ ︸
(6.58)

≤ uk

ul︸︷︷︸
(6.56)

≤
(

uk

ul

)0.5

︸ ︷︷ ︸
(6.57)

(6.59)

Example 6.21. By applying (6.56), (6.57), and (6.58) to convert the utility array U =
[ 0.2 0.4 0.1 0.3 ], which is assessed on a ratio scale, into NRFPRs, we obtain

RN =

⎡
⎢⎢⎣

1 0.5 1 0.67
1 1 1 1

0.5 0.25 1 0.33
1 0.75 1 1

⎤
⎥⎥⎦ (6.60)

RN =

⎡
⎢⎢⎣

1 0.71 1 0.82
1 1 1 1

0.71 0.5 1 0.58
1 0.87 1 1

⎤
⎥⎥⎦ (6.61)
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RN =

⎡
⎢⎢⎣

1 0.25 1 0.44
1 1 1 1

0.25 0.06 1 0.11
1 0.56 1 1

⎤
⎥⎥⎦ (6.62)

It is essential to note that the obtained NRFPRs are coherent with the analysis of the transfor-
mation functions (6.56), (6.57), and (6.58), presented above.

The preferences expressed in terms of a vector of utilities, defined on an interval scale, can be
converted into a NRFPR by means of the following expression:

RN(Xk, Xl ) = H17(uk, ul ) =
{

1 + uk − ul if uk < ul

1 if uk ≥ ul
(6.63)

which is obtained by means of substituting (6.26) into (6.46). Here, the benefit of considering
(6.46), rather than (6.47) and (6.48), is associated with preserving the significance of the
cardinal utility values defined on an interval scale when they are converted into the NRFPR.

Example 6.22. By applying (6.63) to the array of utility values defined on an interval scale
U = [ 1 0.9 0 0.2 ], we obtain the NRFPR given by

RN =

⎡
⎢⎢⎣

1 1 1 1
0.9 1 1 1
0 0.1 1 0.8

0.2 0.3 1 1

⎤
⎥⎥⎦ (6.64)

It is worth noting that (6.64) reflects the fact that X1 is the best alternative (see the first row of
(6.64) filled with ones); X3 is the worst alternative (see the third column of (6.64) filled with
ones); and, as RN(X2, X1) is much higher than RN(X4, X1) in (6.64), we can deduce that X1

is somewhat better than X2 and is much better than X4. All these observations are coherent
with the utility values under consideration.

6.3.2.4 Multiplicative Preference Relation → NRFPR

The multiplicative preference relation can be transformed into a NRFPR with the use of

RN(Xk, Xl ) = H18(M(Xk, Xl ), M(Xl , Xk))

=
⎧⎨
⎩

1 + 1

2
logm

M(Xk, Xl )

M(Xl, Xk)
if logm M(Xk, Xl ) < 0

1 if logm M(Xk, Xl ) ≥ 0
(6.65)

which is obtained by substituting (6.29) into (6.46). The advantage of considering (6.46),
rather than (6.47) or (6.48), in the definition of transformation functions for converting from
multiplicative preference relations into NRFPRs, lies in the fact that the meaning of the ratio
M(Xk, Xl )/M(Xl, Xk) is to some extent preserved, as can be seen in (6.65).
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Example 6.23. Let us convert the multiplicative preference relation (6.5), assessed in Ex-
ample 6.4, into a NRFPR. The use of (6.65), by considering that m = 9, yields (6.66). It is
straightforward to confirm that (6.66) is coherent with (6.5). We leave this task to the reader:

RN =

⎡
⎢⎢⎣

1 1 1 1
0.684 1 1 1
0.114 0.267 1 1
0.114 0.267 1 1

⎤
⎥⎥⎦ (6.66)

6.4 A Method for Repairing Inconsistent Judgments

The importance of collecting consistent judgments has motivated several authors to propose
methods for repairing inconsistencies in the judgments expressed in terms of multiplicative
preference relations or fuzzy preference relations. The aim is to obtain a consistent matrix of
pairwise comparisons by modifying the original judgments as little as possible. For instance,
Zeshui and Cuiping (1999) present a method for repairing multiplicative preference relations so
that multiplicative transitivity is achieved, and Ma et al. (2006) present a method for repairing
ARFPRs in order to achieve weak transitivity. An analyst can make use of such methods
for revising or adjusting the inconsistent preference relations provided by a DM who is not
capable of executing this task on his/her own, in accordance with the procedure represented
in Figure 6.7 (Ma et al., 2006).

Figure 6.7 Process of consistency improvement.
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As discussed in Chapter 5, at present the literature still lacks a consensus on the adequate
consistency condition that needs to be satisfied by the fuzzy preference relations. Although
the min-transitivity has been traditionally utilized as a consistency condition, it also has
been criticized for being an excessively hard and difficult-to-meet condition for practical use
(Herrera-Viedma et al., 2004). In particular, the additive transitivity has been considered a
reasonable condition to be applied when the fuzzy preference relation is additive reciprocal.
One advantageous aspect of its use lies in the fact that the additive transitivity for reciprocal
fuzzy preference relations is equivalent to Saaty’s consistency for multiplicative preference
relations (Herrera-Viedma et al., 2004). However, it is important to mention that both types of
transitivity (the additive and the multiplicative) are in conflict with their corresponding scales
used to quantify the preferences. A sound explanation of the drawbacks of using the additive
transitivity, as well as the multiplicative transitivity, as consistency conditions can be found in
Chiclana, Herrera-Viedma, and Herrera (2004).

Finally, the weak transitivity can be seen as the minimum consistency requirement for
pairwise comparisons, because it requires only that if Xk is at least as good as X j and X j is at
least as good as Xl , then Xk should be at least as good as Xl , without taking into account the
strength of these preferences. In this context, considering that a DM may not be able to make the
adjustments needed to guarantee a satisfactory level of consistency within his/her judgments
when they are expressed in terms of multiplicative preference relations, ARFPR, or NRFPRs,
we present next the method proposed by Ma et al. (2006) for improving the consistency of an
ARFPR until weak transitivity is achieved. Obviously, although it is supposed to be applied
to ARFPRs, it can also be applied indirectly to guarantee the weak transitivity of NRFPRs or
multiplicative preference relations, as long as they are previously converted into ARFPRs. The
following stepwise procedure begins by considering a given ARFPR, denoted here by RR(0).

6.4.1 Method for Repairing an Inconsistent ARFPR to Satisfy
Weak Transitivity

Step 1. Set t = 1 and construct an ARFPR satisfying additive transitivity by means
of the following expression:

RR(1)(Xk, Xl ) = 0.5 + 1

n

⎛
⎝

n∑
j=1

RR(0)(Xk, X j ) − RR(0)(Xl , X j )

⎞
⎠ ∀Xk, Xl , X j ∈ X

(6.67)
where n is the number of alternatives being compared.

Step 2. If there is at least one negative entry in the constructed matrix, the entire ma-
trix must be modified in such a way that the entries of the new matrix are given by

RR(2)(Xk, Xl ) = RR(1)(Xk, Xl ) + r

1 + 2r
∀Xk, Xl , X j ∈ X (6.68)

where r corresponds to the entry of RR(1) which has the larger absolute value,
that is, the most negative entry of RR(1).
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Step 3. Construct matrix RR(3), called the synthesis matrix, by means of

RR(3) = (1 − t�)RR(0) + t�RR(12) (6.69)

where � is a step size defined in the interval [0,1] and the symbol RR(12) denotes
the additive transitive matrix RR(1) or, if RR(1) has at least one negative entry, the
additive matrix RR(2).

Step 4. Verify whether the synthesis matrix RR(3) satisfies weak transitivity (in Ma
et al. (2006), two ways of conducting this test are proposed; in the next chapter, a
simple test will be described). If it does, the procedure is terminated; otherwise,
let t = t + 1 and go to Step 3.

Example 6.24. Let us apply the method described above to repair the following fuzzy prefer-
ence relation:

RR(0) =

⎡
⎢⎢⎣

0.5 0.8 0.8 0.3
0.2 0.5 0.9 0.6
0.2 0.1 0.5 0.1
0.7 0.4 0.9 0.5

⎤
⎥⎥⎦ (6.70)

As can be seen, (6.70) does not satisfy weak transitivity, since we have that RR(0)(X1, X2) >

0.5 and RR(0)(X2, X4) > 0.5, although RR(0)(X4, X1) > 0.5.
In the execution of Step 1, the following ARFPR is obtained with the use of (6.67):

RR(1) =

⎡
⎢⎢⎣

0.5 0.55 0.875 0.475
0.45 0.5 0.825 0.425

0.125 0.175 0.5 0.1
0.525 0.575 0.9 0.5

⎤
⎥⎥⎦ (6.71)

Step 2 can be bypassed, as the relation in (6.71) does not include any negative entries. In Step
3, by applying (6.69) with t = 1 and � = 0.1, we obtain the following synthesis matrix as the
linear aggregation of RR(0) and RR(12):

RR(3) =

⎡
⎢⎢⎣

0.5 0.75 0.815 0.335
0.25 0.5 0.885 0.565

0.185 0.115 0.5 0.1
0.665 0.435 0.9 0.5

⎤
⎥⎥⎦ (6.72)

In Step 4, as (6.72) does not satisfy weak transitivity, we set t = 2 and go back to Step 3. In
Step 3, (6.69) generates the following synthesis matrix:

RR(3) =

⎡
⎢⎢⎣

0.5 0.7 0.83 0.37
0.3 0.5 0.87 0.53

0.17 0.13 0.5 0.1
0.63 0.47 0.9 0.5

⎤
⎥⎥⎦ (6.73)
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In Step 4, as (6.73) still does not satisfy weak transitivity, after setting t = 3, we move to Step
3. In Step 3, (6.73) is updated as

RR(3) =

⎡
⎢⎢⎣

0.5 0.65 0.845 0.405
0.35 0.5 0.855 0.495

0.155 0.145 0.5 0.1
0.595 0.505 0.9 0.5

⎤
⎥⎥⎦ (6.74)

In Step 4, as (6.74) satisfies weak transitivity, the process is terminated.

6.5 Conclusions

The input of the preference information plays a fundamental role in the decision-making pro-
cess, as the recommendations are derived from the mathematical models, which are constructed
in accordance with the supplied information.

In view of the fact that this information is often subjective, vague, and uncertain, it is of
paramount importance to provide the experts with the means to articulate their preferences
as truthfully and accurately as possible. Otherwise, if experts are forced to express their
preferences using a preference format with which they do not feel comfortable, this prefer-
ence information, if not correctly expressed, could negatively impact the overall multicriteria
analysis.

Taking all this into account, in the current chapter we have considered five main types
of preference formats and presented transformation functions that can be utilized to con-
vert the preference information from those different formats into additive reciprocal fuzzy
preference relations, as well as nonreciprocal fuzzy preference relations. The applicability
of those transformation functions can be observed through several examples of multicriteria
decision-making problems studied in Chapters 7, 9, and 10.

Finally, some questions of repairing inconsistencies in the judgments are also discussed in
the chapter.

Exercises

Problem 6.1. Construct a NRFPR from the comparison of the alternatives X1, X2 and X3,
which were evaluated on a maximization criterion F as shown in Figure 6.8 (hint: use the rule
of thumb given in Section 6.2).

Problem 6.2. Verify whether the fuzzy preference relation given by (6.8) satisfies additive
transitivity.

Problem 6.3. Given the following definition of weak transitivity for ARFPRs:

if RR(Xk, Xl) ≥ 0.5 and RR(Xl , X j ) ≥ 0.5, then RR(Xk, X j ) ≥ 0.5

verify whether (6.8) satisfies weak transitivity.



P1: OTA/XYZ P2: ABC
c06 JWST012-Pedrycz September 21, 2010 9:16 Printer Name: Yet to Come

Construction of Fuzzy Preference Relations 189

Figure 6.8 Evaluation of alternatives on criterion F .

Problem 6.4. Verify whether the fuzzy preference relation given by (6.9) satisfies (a) min-
transitivity and (b) weak transitivity.

Problem 6.5. Convert the ordered array O = [1 2 3 4] into an ARFPR.

Problem 6.6. Use the transformation function (Chiclana, Herrera, and Herrera-Viedma, 1998)

RR(Xk, Xl ) = H (ok, ol ) =
⎧⎨
⎩

1 if ol − ok > 0
0.5 if ol − ok = 0
0 if ol − ok < 0

to convert the ordered array of Problem 6.5 into an ARFPR. In analyzing the obtained ARFPR,
how can one identify which is the first ranked and the worst ranked alternatives from the original
ordered array? Compare this transformation function to the one given by (6.17).

Problem 6.7. Convert the array of utility values U = [1 0 0.2 0.5] into NRFPRs with the use
of (6.56), (6.57), and (6.58). By applying (5.36) to each NRFPR, obtain the corresponding
fuzzy indifference relations. Try to relate the obtained results to the main differences discussed
in Section 6.3 among the transformation functions (6.56), (6.57), and (6.58).

Problem 6.8. Consider that a DM provided the following NRFPR:

RN =
⎡
⎣

1 1 0.8
0.5 1 1
1 0.7 1

⎤
⎦

Verify whether it satisfies weak transitivity and, if necessary, use the method described in
Section 6.4 for repairing its inconsistencies.
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7
Discrete Models of Multicriteria
Decision-Making and
their Analysis

In this chapter, we discuss the essence and present methods used to analyze problems of
multicriteria evaluation, comparison, choice, prioritization, and/or ordering of alternatives.
There exist two classes of situations which give rise to these problems. The first one is
associated with the direct statement of multiattribute decision-making problems when the
consequences associated with solutions to problems cannot be estimated with the use of a
single criterion. The second class is related to problems that may be solved on the basis of a
single criterion; however, if the uncertainty of information does not permit a unique solution
to be obtained, it is possible to include additional criteria and thereby convert these problems
into tasks of multiattribute decision-making. In the chapter, we describe diverse techniques of
multiattribute analysis of alternatives in a fuzzy environment (techniques aimed at the analysis
of 〈X, R〉 models), developed on the basis of fuzzy preference modeling. Although these
techniques are directly related to individual decision-making, they can be and are applied to
procedures of group decision-making. It is shown that the discussed techniques can lead to
different solutions. However, this diversity of solutions is to be considered natural and the most
appropriate technique has to be selected by taking into account the essence of the problem,
the possible sources of information, and its associated uncertainty.

7.1 Optimization Problems with Fuzzy Coefficients and their Analysis

In Chapter 1, we discussed the general issues related to the necessity of setting up and
solving multicriteria problems. In particular, one of the classes of situations which call for the
application of a multicriteria approach is associated with problems that may be solved on the
basis of a single criterion. However, if uncertainty of available information does not allow us
to derive unique solutions, it is possible to transform these problems to multicriteria decision-
making by applying some additional criteria, including those of a qualitative character, in

Fuzzy Multicriteria Decision-Making: Models, Methods and Applications          Witold Pedrycz, Petr Ekel and Roberta Parreiras
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order to reduce the decision uncertainty regions. Taking this into account, let us consider
a model which includes fuzzy coefficients present in an objective function and constraints.
There exist numerous problems related to system design, planning, operation, and control,
which can be formalized within the framework of this type of model. Further, although
there are diverse formulations of optimization problems with fuzziness (Dubois and Prade,
1980; Orlovsky, 1981; Delgado et al., 1994; Zimmermann, 1996; Zimmermann, 2008), in
the opinion of Orlovsky (1981) and Pedrycz and Gomide (1998) the problems with fuzzy
coefficients in objective functions and constraints are to be considered as general problems of
fuzzy mathematical programming. They can be formulated as follows:

maximize F(x1,x2, . . . ,xn) (7.1)

subject to constraints

G j (x1,x2, . . . ,xn) ⊆ B j , j = 1, 2, . . . , m (7.2)

where the objective function (7.1) and constraints (7.2) include fuzzy coefficients.
The fundamental question which arises when solving optimization problems under uncer-

tainty is how to account for constraints of a different nature and, primarily, the functional
constraints. For simplicity of our considerations, we start with just a single constraint of the
following form:

n∑

i=q

Gi xi ⊆ B (7.3)

where Gi , i = 1, 2, . . . , n, and B are fuzzy numbers with their membership functions Gi (gi ),
i = 1, 2, . . . , n, and B(b), respectively.

An approach to handling constraints of the form (7.3) was proposed a long time ago (Negoita
and Ralescu, 1975). In particular, if certain conditions are satisfied (specifically, with regard
to the convexity of the fuzzy coefficients Gi , i = 1, 2, . . . , n, and B), and we assume the
possibility of introducing order

0 ≤ α1 < α2 < · · · < αk < · · · < αl ≤ min
(

min
1≤i≤n

sup Gi (gi ), B(b)
)

(7.4)

then the constraint (7.3) can be modified to obtain the following system of numeric inclusions:

n∑

i=1

Gi,αk xi ⊆ Bαk , k = 1, 2, . . . , l (7.5)

where Gi,αk and Bαk , k = 1, 2, . . . , l, are sets of the αk-level (α-cuts) of Gi , i = 1, 2, . . . , n,
and B, respectively.

Considering the definition of sets of an αk-level, see Chapter 2, from (7.5) we obtain

n∑

i=1

[gi1,αk , gi2,αk ]xi ⊆ [b1,αk , b2,αk ], k = 1, 2, . . . , l (7.6)
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which means that

n∑

i=1

gi2,αk xi ≤ b2,αk , k = 1, 2, . . . , l (7.7)

and

n∑

i=1

gi1,αk xi ≥ b1,αk , k = 1, 2, . . . , l (7.8)

Using the principle of explicit domination, see (7.12), (7.13) below, we can reduce the dimen-
sionality of the sets of inequalities (7.7) and (7.8). As a result of normalization (Ekel, Pedrycz,
and Schinzinger, 1998), carried out in accordance with the expression

hi,αk = gi,αk

b

bαk

, k = 1, 2, . . . , l, i = 1, 2, . . . , n (7.9)

we can consider, instead of (7.7) and (7.8), the sets of constraints

n∑

i=1

hi2,αk xi ≤ b, k = 1, 2, . . . , l (7.10)

and

n∑

i=1

hi1,αk xi ≥ b, k = 1, 2, . . . , l (7.11)

respectively. In (7.9)–(7.11), b > 0 is a normalization factor.
If, as a result of analyzing the set of constraints (7.10) with hi2,αk ≥ 0, it turns out that

hi2,αq ≤ hi2,αp , q �= p, i = 1, 2, . . . , n (7.12)

then the pth constraint, for a purposeful increase in the variables xi ,i = 1, 2, . . . , n, is disturbed
earlier than the qth constraint. For this reason, the qth constraint can be eliminated from further
consideration.

In a similar way, the condition of eliminating the qth constraint from consideration in the
case of analyzing the set of constraints (7.11) becomes

hi1,αq ≥ hi1,αp , q �= p, i = 1, 2, . . . , n (7.13)

According to the essence of the optimization problem, one may replace constraints (7.2) with
constraints

g j (x1,x2 . . . ,xn) ≤ b j , j = 1, 2, . . . , m ′ ≥ m (7.14)
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or constraints

g j (x1,x2, . . . ,xn) ≥ b j , j = 1, 2, . . . , m ′′ ≥ m (7.15)

Hence, as regards the problem with constraints containing fuzzy coefficients, one can obtain an
equivalent nonfuzzy analog of the problem whose dimension is reduced by using the principle
of explicit domination (7.12) or (7.13).

The solution to problems containing fuzzy coefficients present in objective functions alone is
possible by a modification of traditional mathematical programming methods (Ekel, Pedrycz,
and Schinzinger, 1998; Ekel, 2002).

When using optimization methods for fuzzy problems, one needs to compare solutions at the
levels of the objective function (in essence, we compare or rank corresponding fuzzy numbers
to choose the largest or smallest one). If we consider a problem of linear programming and the
corresponding modification of the simplex method for its solution, it is necessary to compare
the coefficients of nonbasic variables to zero at any cycle of the optimization process.

Taking into account the discussion covered in Chapter 6, we can apply the fuzzy number
ranking index introduced by Orlovsky (1981) to complete this comparison. However, let us
keep in mind that if the membership functions of the solutions (fuzzy numbers) F1 and F2 being
compared are trapezoidal or flat fuzzy numbers, then these solutions can be indistinguishable
considering the condition (6.16). In such situations, algorithms based on the modification of
traditional optimization methods do not allow unique solutions to be obtained because they
“stop” when conditions such as (6.16) arise (Ekel, Pedrycz, and Schinzinger, 1998; Galperin
and Ekel, 2005). This is natural because a combination of the uncertainty and the relative
stability of optimal solutions can produce decision uncertainty regions. This is illustrated
by the following simple example (Galperin and Ekel, 2005) where we apply an appropriate
modification of the simplex method of linear programming.

Example 7.1. Consider the following problem:

maximize F(x1, x2) = C1x1 + C2x2 (7.16)

subject to

G11x1 + G12x2 ⊆ B1 (7.17)

G21x1 + G22x2 ⊆ B2 (7.18)

x1 ≥ 0, x2 ≥ 0 (numeric) (7.19)

where all coefficients in (7.16)–(7.18) are trapezoidal fuzzy numbers defined as

C1 = {1.2, 1.3, 1.6, 1.7}, C2 = {2.1, 2.2, 2.7, 2.8}, G11 = {9, 10, 11, 12},
G12 = {5, 6, 8, 9}, B1 = {24, 29, 49, 53}, G21 = {6, 7, 9, 10},
G22 = {6, 7, 9, 10}, and B2 = {25, 29, 48, 52}.

Taking into account, that G11, G12, B1, G21, G22, and B2 are trapezoidal fuzzy numbers, it
is sufficient to consider constraints (7.17) and (7.18) for α1 = 0 and α2 = αl = 1. For this
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reason, using (7.10) and (7.11), we can rewrite (7.17) as follows:

12x1 + 9x2 ≤ 53 (7.20)

11x1 + 8x2 ≤ 49 (7.21)

and

9x1 + 5x2 ≥ 24 (7.22)

10x1 + 6x2 ≥ 29 (7.23)

Similarly, we can replace the constraint (7.18) by the following inequalities:

10x1 + 10x2 ≤ 52 (7.24)

9x1 + 9x2 ≤ 48 (7.25)

and

6x1 + 6x2 ≥ 25 (7.26)

7x1 + 7x2 ≥ 29 (7.27)

Taking into account that we have to maximize the objective function with positive coefficients,
it is possible to ignore (7.22), (7.23) and (7.26), (7.27). The principle of explicit domination
(7.12) applied to (7.20) and (7.21) allows us to eliminate (7.21) from further consideration.
The application of the principle of explicit domination (7.12) to (7.24), and (7.25) results in
the elimination of (7.25).

Finally, introducing the slack variables x3 ≥ 0 and x4 ≥ 0, we transform (7.20) and (7.24)
to the form

12x1 + 9x2 + x3 ≤ 53 (7.28)

10x1 + 10x2 + x4 ≤ 52 (7.29)

respectively.
To apply the modification of the version of the simplex method given in Rao (1996), we

have to consider the minimization problem instead of (7.16). Thus we have the problem

minimize [−F(x1, x2)] = −C1x1 − C2x2 (7.30)

subject to (7.28), (7.29), and

xi ≥ 0, i = 1, . . . , 4 (7.31)

Applying the above-mentioned modification of the simplex method with the realization of
necessary operations, discussed in Chapter 3 for the fuzzy coefficients of the objective func-
tion, in the first cycle we obtain: x1 = 4.42, x4 = 7.85 (basic variables) and x2 = 0, x3 = 0
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Figure 7.1 Coefficients of nonbasic variables (the first cycle).

(nonbasic variables) with C2 = {−1.90,−1.73,−1.00,−0.83}, C3 = {0.10, 0.11, 0.13, 0.14}
(see Figure 7.1). Since C2 < 0, we continue and realize the second cycle: x1 = 2.07, x2 = 3.13
(basic variables) and x3 = 0, x4 = 0 (nonbasic variables) with C3 = {−0.53,−0.47,−0.20,

− 0.13}, C4 = {0.33, 0.40, 0.69, 0.76} (see Figure 7.2). Since C3 < 0, we are able to continue,
obtaining in the third cycle: x2 = 5.20, x3 = 6.22 (basic variables) and x1 = 0, x4 = 0 (nonba-
sic variables) with C1 = {0.40, 0.60, 1.40, 1.60}, C4 = {−0.15,−0.02, 0.51, 0.64} (see Fig-
ure 7.3). Taking into account that, when comparing C4 to zero, the situation (6.16) takes
place, the simplex method “stops”; that is, it “cannot identify” if the optimal solution has been
obtained or not.

In an attempt to overcome this type of situation or, at least, to contract the decision uncertainty
regions to the highest extent, the approach based on formulating and solving one and the
same problem within the framework of mutually related models has been proposed (Ekel,
Pedrycz, and Schinzinger, 1998; Ekel, 2002). In particular, problem (7.1) with constraints
(7.2) approximated by (7.14), and the problem

minimize F(x1, x2, . . . , xn) (7.32)

subject to the same constraints (7.2), approximated by (7.15), can serve as a mutually related
model.

This approach is applicable for solving continuous as well as discrete optimization problems.
To understand its essence, let us proceed with the analysis of a certain discrete problem.

Figure 7.2 Coefficients of nonbasic variables (the second cycle).
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Figure 7.3 Coefficients of nonbasic variables (the third cycle).

The desirability of allowing for constraints on the discrete nature of variables in the form
of discrete sequences

xsi , αsi , βsi , . . . , si = 1, 2, . . . , ri (7.33)

has been validated by Zorin and Ekel (1980); here αsi , βsi , . . . are technical and economic char-
acteristics required for the formation of objective functions, constraints, and their increments
that correspond to the sth standard value of the variable xi .

It is expedient to use discrete sequences of the type (7.33) because the characteristics
αsi , βsi , . . . cannot always be fitted closely to the analytical relationships in terms of xsi ,
but in discrete sequences of the type (7.33) these characteristics may be treated as exact.
Furthermore, a flexible formalization of combinatorial types of problems is possible on the
basis of the discrete sequences because they can be different for different variables. Examples
of this flexible usage of the discrete sequences are presented in Zorin and Ekel (1980) and
Ekel and Schuffner Neto (2006).

Taking the above into consideration with respect to the expediency of using discrete se-
quences, and by analogy with the problem (7.1), (7.2), the maximization problem can be
formulated as follows.

Assume we are given discrete sequences of the type (7.33) (which, depending on the
formulation of the problem, could be either increasing or decreasing). From these sequences
of discrete values it is necessary to choose elements such that the objective

maximizeF(xs1 , αs1 , βs1 , . . . , xs2 , αs2 , βs2 , . . . , xsn , αsn , βsn , . . .) (7.34)

is met while satisfying the constraints

g j (xs1 , αs1 , βs1 , . . . , xs2 , αs2 , βs2 , . . . , xsn , αsn , βsn , . . .) ⊆ B j , j = 1, 2, . . . , m (7.35)

Given a maximization problem of the type (7.33)–(7.35) considered above, and by analogy
with (7.32), we can formulate a mutually related problem with the objective

minimizeF(xs1 , αs1 , βs1 , . . . , xs2 , αs2 , βs2, . . . , xsn , αsn , βsn , . . .) (7.36)

while satisfying the constraints (7.35).
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Taking the above into account, the constraints (7.35) may be reduced to the set of nonfuzzy
(numeric) constraints

g j (xs1 , αs1 , βs1 , . . . , xs2 , αs2 , βs2 , . . . , xsn , αsn , βsn , . . .) ≤ b j , j = 1, 2, . . . , m ′ ≥ m

(7.37)

and

g j (xs1 , αs1 , βs1 , . . . , xs2 , αs2 , βs2 , . . . , xsn , αsn , βsn , . . .) ≥ b j , j = 1, 2, . . . , m ′′ ≥ m

(7.38)

Let us consider an example from Ekel, Pedrycz, and Schinzinger (1998) to demonstrate the
analysis of the mutually related models (7.34), (7.37) (with the increasing (decreasing) discrete
sequences (7.33)) and (7.36), (7.38) (with the decreasing (increasing) discrete sequences
(7.33)) and the results based on its application.

Example 7.2. Assume that we are given the discrete sequence

xsi αsi βsi

si = 1: 0, 0, 26
si = 2: 1, 3, 25
si = 3: 2, 6, 23
si = 4: 3, 9, 19
si = 5: 4, 12, 14
si = 6: 5, 15, 9

(7.39)

From this sequence it is necessary to choose elements which maximize the objective function

F(x1, x2) = [(C1αs1 + βs1 ) + (C2αs2 + βs2 )] (7.40)

subject to the following set of constraints:

G11xs1 + G12xs2 ⊆ B1 (7.41)

G21xs1 + G22xs2 ⊆ B2 (7.42)

where all coefficients in (7.40)–(7.42) are trapezoidal fuzzy numbers defined as

C1 = {1.2, 1.4, 1, 5, 1.7}, C2 = {2.1, 2.4, 2.5, 2.8}, G11 = {5, 6, 8, 9},
G12 = {9, 10, 11, 12}, B1 = {24, 29, 49, 53}, G21 = {6, 7, 9, 10},
G22 = {6, 7, 9, 10}, and B2 = {25, 29, 48, 52}.

As presented in Example 7.1, it is sufficient to consider the constraints (7.41) and (7.42) for
α1 = 0 and α2 = αl = 1. In this regard, we can write for (7.41)

12xs1 + 9xs2 ≤ 53 (7.43)

11xs1 + 8xs2 ≤ 49 (7.44)
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and

9xs1 + 5xs2 ≥ 24 (7.45)

10xs1 + 6xs2 ≥ 29 (7.46)

Similarly, we may go from the constraints (7.42) to the following inequalities:

10xs1 + 10xs2 ≤ 52 (7.47)

9xs1 + 9xs2 ≤ 48 (7.48)

and

6xs1 + 6xs2 ≥ 25 (7.49)

7xs1 + 7xs2 ≥ 29 (7.50)

The principle of explicit domination (7.12) applied to (7.43) and (7.44) results in the elimination
of (7.44) from further consideration. The application of the principle of explicit domination
(7.12) to (7.47) and (7.48) eliminates (7.48).

Similarly, applying the principle of explicit domination (7.13) to (7.45) and (7.46), we elim-
inate (7.45) from further consideration. The application of the principle of explicit domination
(7.13) to (7.49) and (7.50) eliminates (7.50).

Thus the problem becomes reduced to maximizing (7.40) subject to the constraints (7.43)
and (7.47). At the same time, the mutually related problem consists of minimizing

F(x1, x2) = [−(C1αs1 + βs1 ) − (C2αs2 + βs2 )] (7.51)

subject to the constraints (7.46) and (7.49) with the use of the discrete sequence that is
decreasing on si :

xsi αsi βsi

si = 1: 5, 15, 26
si = 2: 4, 12, 14
si = 3: 3, 9, 19
si = 4: 2, 6, 23
si = 5: 1, 3, 25
si = 6: 0, 0, 26

(7.52)

The process of solving the problem (7.39), (7.40), (7.43), and (7.47) on the basis of modifying
the generalized algorithms of discrete optimization (Ekel, Pedrycz, and Schinzinger, 1998; Ekel
and Schuffner Neto, 2006) is presented in Ekel, Pedrycz, and Schinzinger (1998). In particular,
the process “stops” when we meet a situation where it is impossible to distinguish two
solutions X1 = {x1 = 2, x2 = 3} and X2 = {x1 = 1, x2 = 4}. At the same time, the solution
of the mutually related problem (7.52), (7.51), (7.46), and (7.49) leads to the solution X3 =
{x1 = 0, x2 = 5}. As is shown in Ekel, Pedrycz, and Schinzinger (1998), there are no more
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cut from above

cut from below

decision uncertainty region

Figure 7.4 Cutting dominated alternatives.

solutions which are competitive. Thus, the decision uncertainty region X = {X1, X2, X3} is a
formal solution to the problem (7.39)–(7.42).

Schematically, the demonstrated approach can be reflected as in Figure 7.4: the solutions
dominated by the initial objective function are cut off from below as well as from above to the
highest degree.

Thus, it was demonstrated that the uncertainty of information, particularly reflected by
fuzzy coefficients in objective functions and constraints of monocriteria problems, generates
the decision uncertainty regions. Their contraction, as indicated above, is possible on the
basis of reducing the problem to multicriteria decision-making by applying additional criteria,
including those of a qualitative character. It is natural that the problem of the evaluation,
comparison, choice, prioritization, and/or ordering of alternatives can be initially stated as a
multicriteria problem.

7.2 Discrete Models (〈X, R〉 Models) of Multiattribute
Decision-Making

The problem of multiattribute analysis of alternatives in a fuzzy environment can be formulated
as follows. Assume we are given a set X of alternatives coming from the decision uncertainty
region and/or predetermined alternatives, which are to be examined by q criteria of a quan-
titative and/or qualitative nature. The problem of decision-making, as elaborated in Chapter
1, may be presented as a pair 〈X, R〉 where R = [ R1 R2 . . . R p . . . Rq ] is a vector of fuzzy
preference relations (Orlovsky, 1981; Fodor and Roubens, 1994), which can be presented
as follows:

R p(Xk, Xl ) : X × X → [0, 1], k,l = 1, 2, . . . , n, p = 1, 2, . . . , q (7.53)
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where R p(Xk, Xl ) : X × X → [0, 1] is a membership function of the pth fuzzy
preference relation.

In Chapter 6, we analyzed the use of different preference formats for the presentation
of initial information for decision-making and the rationality of utilizing fuzzy preference
relations for a uniform preference representation (along with the questions of converting
different preference forms into fuzzy preference relations). Taking this into account, hence-
forth in this chapter we present approaches for carrying out the evaluation, comparison,
choice, prioritization, and/or ordering of alternatives on the basis of information reflected
by (7.53).

Below, we discuss six different techniques of multiattribute analysis of alternatives in a
fuzzy environment (techniques of analysis of 〈X, R〉 models). The first, second, and the third
techniques are directly based on the notion of the Orlovsky choice function (Orlovsky, 1978;
Orlovsky, 1981). The fourth technique is also based on applying the notion of the Orlovsky
choice function. However, it allows a DM to present information related to the importance
of criteria considered in a fuzzy form, particularly in the NRFPR (Nonreciprocal Fuzzy
Preference Relation) form. The fifth technique should be considered as a generalized version
of applying the Orlovsky choice function related to the use of the ordered weighted average
(OWA) operator (Yager, 1988; Yager, 1995; Chiclana et al., 1996, Grabisch, Orlovski, and
Yager, 1998). Finally, the sixth technique is based on the construction and exploitation of a
specific type of fuzzy preference relation named the outranking relation (Roy, 1968; Brans
and Vincke, 1985; Roy, 1991; Bouyssou, 1997).

In this chapter, to be consistent with the notation utilized in Chapter 6, we use R to denote
fuzzy nonstrict preference relations. We anticipate that, as we only make use of nonreciprocal
fuzzy preference relations within this chapter, we do not use any particular notation to indicate
whether the fuzzy preference relation under consideration is an additive reciprocal fuzzy
preference relation or a nonreciprocal fuzzy preference relation.

7.3 Basic Techniques of Analysis of 〈X, R〉 Models

In this section, we present three techniques of the analysis of 〈X, R〉 models, which are based
on the application of the notion of the Orlovsky choice function. This notion was introduced
by Orlovsky (Orlovsky, 1978; Orlovsky, 1981) and afterward studied by many researchers.
For instance, it was shown in Barrett, Patanalk, and Salles (1990) that the Orlovsky choice
function possesses many interesting and desirable properties. Its axiomatic characterization is
given, for example, in Banerjee (1993), Bouyssou (1997), and Sengupta (1998).

At first, let us consider the situation of setting up a single fuzzy nonstrict preference
relation R. It can be processed to construct a fuzzy strict preference relation P . In particular,
(Xk, Xl ) ∈ P means that Xk is strictly better than Xl (or Xk dominates Xl , that is, Xk � Xl).

As discussed in Chapter 5, with the use of the operations on fuzzy sets, it is possible
to define the fuzzy strict preference relation P exclusively in terms of the fuzzy nonstrict
preference relation R (a conceptual definition of P in terms of R is given by expression
(5.33)). For practical purposes, one possible manner of deriving the fuzzy strict preference
relation P from a fuzzy nonstrict preference relation is by means of expression (5.35). As
will be shown next, (5.35) plays an important role in this chapter, as it allows one to carry out
the choice or ranking of the alternatives. In particular, one can note that P(Xl, Xk),∀Xk ∈ X,
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is the membership function of the fuzzy set of all Xk which are strictly dominated by Xl .
Naturally, the complementary relation Pc(Xl , Xk) = 1 − P(Xl, Xk),∀Xk ∈ X (refer to (5.3)
for the definition of complementary relation), gives the fuzzy set of alternatives which are
not dominated by Xl . Therefore, in order to meet the set of alternatives from X that are
not dominated by other alternatives, it is sufficient to find the fuzzy preference relation that
corresponds to the intersection of all Pc(Xl, Xk), Xk ∈ X, on all Xl ∈ X (Orlovsky, 1981).
This intersection, which corresponds to the fuzzy set of nondominated alternatives, can be
implemented as follows:

ND(Xk) = min
Xl∈X

(1 − P(Xl, Xk)) = 1 − max
Xl∈X

P(Xl, Xk) (7.54)

In this way, (7.54) allows one to evaluate the level of nondominance of each alternative Xk .
Considering that it is natural to choose alternatives providing the highest level of nondomi-
nance, one can choose alternatives XND in accordance with the following expression:

XND =
{

XND
k |XND

k ∈ X, ND(XND
k ) = max

Xk∈X
ND(Xk)

}
(7.55)

Example 7.3. Consider the fuzzy nonstrict preference relation

R =

⎡

⎢⎢⎣

1 0.6 0.5 0.4
0 1 0.4 0.8

0.1 0.6 1 0
0.6 0.2 0.8 1

⎤

⎥⎥⎦ (7.56)

defined on a set of alternatives X = {X1, X2, X3, X4}, which are to be ordered and the best
one is to be selected.

Applying (5.35) to (7.56), we can obtain the membership function of the fuzzy strict
preference relation

P =

⎡

⎢⎢⎣

0 0.6 0.4 0
0 0 0 0.6
0 0.2 0 0

0.2 0 0.8 0

⎤

⎥⎥⎦ (7.57)

Then on the basis of (7.54), we obtain the membership function of the fuzzy set of
nondominated alternatives

ND = [ 0.8 0.4 0.2 0.4 ] (7.58)

This permits us to determine X1 � X2 ∼ X4 � X3. Finally, XND = {X1}.
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Following Orlovsky (1981), it is possible to introduce the notion of a set of nonfuzzy,
nondominated alternatives. In particular, if maxXk∈X ND(Xk) = 1, then the set of alternatives

XNFND =
{

XNFND
k |XNFND

k ∈ X, ND(XNFND
k ) = 1

}
(7.59)

is nonfuzzy and nondominated and can be considered as a nonfuzzy solution to the problem
expressed in terms of fuzzy sets.

If the fuzzy preference relation R satisfies weak transitivity, then we have XNFND �= ∅.
Taking this into consideration, it should be noted that when the preferences of a DM are
expressed by means of the ordering of alternatives, utility values, or fuzzy estimates and are
subsequently transformed into fuzzy preference relations with the use of adequate transforma-
tion functions, selected among the ones presented in Chapter 6, then XNFND is nonempty, since
those transformation functions guarantee weak transitivity of the resulting fuzzy preference
relation. However, it is possible to have XNFND = ∅ if a DM provides his/her preferences as
a multiplicative preference relation or a fuzzy preference relation that does not satisfy weak
transitivity. In such cases, we should recall from Chapter 6 that the transformation functions
for converting multiplicative preference relations or ARFPRs into NRFPRs transmit the ex-
istent inconsistencies to the fuzzy preference relation. Hence, by considering the cardinality
of XNFND, it is possible to detect contradictions in the expert’s estimates. In real-world appli-
cations, weak transitivity is a requisite to be satisfied by the preferences of each DM, since
it is a necessary consistency condition to guarantee the rationality of the decisions based on
applying the Orlovsky choice function (Sengupta, 1998). Particularly, an unreasonable effect
of the lack of weak transitivity in a fuzzy nonstrict preference relation is associated with the
fact that it may cause the Orlovsky choice function to violate an axiom referred to in the
literature as independence of rejected alternatives. According to this axiom, if the Orlovsky
choice function indicates a subset X1 ⊂ X as the best solution for the problem, the exclusion
from the set X of any alternative not belonging to X1 should not affect the formation of the
choice set obtained with the use of the Orlovsky choice function. In the following example a
violation of the independence of rejected alternatives is demonstrated.

Example 7.4. A DM must rank a set X = {X1, X2, X3} of alternatives and select the best one.
The DM’s preferences are articulated as the fuzzy nonstrict preference relation

R =
⎡

⎣
1 1 0.8

0.98 1 1
1 0.8 1

⎤

⎦ (7.60)

which does not satisfy the property of weak transitivity. We should have R(X2, X1) ≥
R(X1, X2) in (7.60), since we have R(X2, X3) > R(X3, X2) and R(X3, X1) > R(X1, X3).
But, instead, we have R(X2, X1) = 0.98, which is lower than R(X1, X2) = 1.

Applying (5.35) to (7.60), we obtain the membership function of the fuzzy strict preference
relation

P =
⎡

⎣
0 0.02 0
0 0 0.2

0.2 0 0

⎤

⎦ (7.61)
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Then, with the use of (7.54), we obtain the membership function of the fuzzy set of
nondominated alternatives

ND = [ 0.8 0.98 0.8 ] (7.62)

Although (7.62) allows us to order X2 � X1 ∼ X3 and to select XND = {X2}, it yields
XNFND = ∅. Further, according to the axiom of independence of rejected alternatives, the
set XND should remain the same if X1 or X3 is excluded from X. However, when X3 is ex-
cluded from X, the choice set becomes XND = {X1}. The reader should note that, with the
exclusion of X3 from X, the third line and the third column of (7.60) are eliminated as follows:

R =
[

1 1
0.98 1

]
(7.63)

Similarly, the third line and the third column of (7.61) are eliminated as follows:

P =
[

0 0.02
0 0

]
(7.64)

Consequently, the membership function of the fuzzy set of nondominated alternatives defined
in accordance with (7.54) is updated to

ND = [
1 0.98

]
(7.65)

which allows us to order X1 � X2 and to select XND = {X1}.
Now, let us consider that the DM has repaired (7.60) to satisfy weak transitivity as follows:

R =
⎡

⎣
1 0.98 0.8
1 1 1
1 0.8 1

⎤

⎦ (7.66)

Then the membership function of the fuzzy strict preference relation becomes

P =
⎡

⎣
0 0 0

0.02 0 0.2
0.2 0 0

⎤

⎦ (7.67)

and, with the use of (7.54), we obtain the membership function of the fuzzy set of nondominated
alternatives

ND = [ 0.8 1 0.8 ] (7.68)

which permits us to determine the order X2 � X1 ∼ X3. Finally, XND = {X2} = XNFND, be-
cause it is a nonfuzzy solution. The reader is invited to confirm that, when we consider (7.66)
rather than (7.60), the exclusion of the rejected alternatives X1 or X3 does not cause any
change to the choice set.
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The expressions (5.35), (7.54), and (7.55) may be utilized to solve choice problems, as
well as other problems, related to the evaluation, comparison, choice, prioritization, and/or
ordering of alternatives with a single criterion. These expressions may also be applied when
R is a vector of fuzzy preference relations.

Let us consider the first technique for dealing with a vector of fuzzy preference relations
R (Orlovsky, 1981). The expressions (5.35), (7.54), and (7.55) are applicable if we take the
intersection R = ⋂q

p=1 R p with the membership function

R(Xk, Xl ) = min
1≤p≤q

R p(Xk, Xl), Xk, Xl ∈ X (7.69)

The reader should note that the use of an intersection operator to aggregate the fuzzy preference
relations in (7.69) reflects the need to satisfy all criteria simultaneously in a strict sense; that
is, we can interpret (7.69) as the need to satisfy F1 and F2 and . . . Fp and . . . and Fq . When
using (7.69), the set XND fulfils the role of a Pareto set (Orlovsky, 1981). Its contraction is
possible on the basis of differentiating the importance of R p, p = 1, . . . ,q, with the use of the
following convolution:

T (Xk, Xl ) =
q∑

p=1

λp R p(Xk, Xl ), Xk, Xl ∈ X (7.70)

where λp, p = 1, . . . ,q, are importance factors of the corresponding criteria, defined as (4.15)
and (4.16).

The construction of T (Xk, Xl ), Xk, Xl ∈ X, allows us to obtain the membership function
NDT(Xk) of the fuzzy set of nondominated alternatives according to an expression similar to
(7.54). The intersection

Q(Xk) = min(ND(Xk), NDT(Xk)), Xk ∈ X (7.71)

provides us with a set of alternatives with the highest level of nondominance

XND =
{

XND
k |XND

k ∈ X, Q(XND
k ) = sup

Xk∈X
Q(Xk)

}
(7.72)

Expressions (7.54) and (7.55) can serve as the basis for building the second technique, which is
of a lexicographic character. It is based on the step-by-step application of criteria for comparing
alternatives. The technique permits one (Ekel, Pedrycz, and Schinzinger, 1998; Ekel, 2001;
Ekel, 2002) to construct a sequence X1, X2, . . . ,Xq so that X ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xq . This is
accomplished by using the following expressions:

NDp(Xk) = min
Xl∈Xp−1

(1 − P p(Xl , Xk)) = 1 − max
Xl∈Xp−1

P p(Xl, Xk), p = 1, 2, . . . , q (7.73)

Xp =
{

XND,p
k |XND,p

k ∈ Xp−1, NDp(XND,p
k ) = max

Xl∈Xp−1
NDp(Xk)

}
(7.74)
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Finally, it is possible to present the third technique (Ekel and Schuffner Neto, 2006; Ekel,
Martini, and Palhares, 2008). In particular, the utilization of (7.54) in the form

ND(Xk) = 1 − max
Xl∈X

P p(Xl , Xk), p = 1, 2, . . . ,q (7.75)

allows us to construct the membership functions of the fuzzy set of nondominated alternatives
for each fuzzy preference relation. The fuzzy sets NDp(Xk), p = 1, 2, . . . ,q, can be aggregated
with the use of an intersection operator in order to reflect the need to satisfy F1 and F2 and
. . . Fp and . . . and Fq (the reader should note that the membership functions NDp(Xk) play
a role identical to membership functions replacing objective functions Fp(x), p = 1, . . . ,q,
when analyzing 〈X, M〉 models). Therefore, one constructs

ND(Xk) = min
1≤p≤q

NDp(Xk) (7.76)

to obtain XND. If it is necessary to differentiate the importance of different preference relations,
it is possible to transform (7.76) as follows:

ND(Xk) = min
1≤p≤q

(NDp(Xk))λp (7.77)

The use of (7.77) does not require normalization of λp, p = 1, . . . ,q, in the way similar
to (4.16).

Example 7.5. This example is an immediate continuation of Example 7.2, where the solu-
tion of the discrete optimization problem with fuzzy coefficients in the objective function
and constraints has generated the decision uncertainty region X = {X1, X2, X3}. The indistin-
guishable alternatives are to be compared with the application of the three criteria. The first
criterion (p = 1) demands the minimization of F1(Xk). The second criterion (p = 2) and the
third criterion (p = 3) demand the maximization of F2(Xk) and F3(Xk), respectively.

Without discussing the question of constructing fuzzy nonstrict preference relations which
correspond to these criteria, assume that they are as follows:

R1 =
⎡

⎣
1 1 1
1 1 1

0.94 0.94 1

⎤

⎦ (7.78)

R2 =
⎡

⎣
1 0.94 0.14
1 1 0.94
1 1 1

⎤

⎦ (7.79)

R3 =
⎡

⎣
1 1 1

0.94 1 1
0.94 1 1

⎤

⎦ (7.80)

Let us begin by considering the solution of the problem on the basis of the first technique. The
intersection of the fuzzy nonstrict preference relations (7.78)–(7.80) constructed on the basis
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of (7.69) is as follows:

R =
⎡

⎣
1 0.94 0.14

0.94 1 0.94
0.94 0.94 1

⎤

⎦ (7.81)

Applying (5.35), we can construct the fuzzy strict preference relation

P =
⎡

⎣
0 0 0
0 0 0

0.80 0 0

⎤

⎦ (7.82)

which, according to (7.54), generates

ND = [ 0.2 1 1 ] (7.83)

and XND = {X2, X3}.
Let us consider the application of the second technique, where the criteria are arranged, for

example, in the following order of importance: p = 1, p = 2, and p = 3.
By subsequently applying (5.35), (7.73), and (7.74), on the basis of the fuzzy nonstrict

preference relation (7.78), we obtain

P1 =
⎡

⎣
0 0 0.06
0 0 0.06
0 0 0

⎤

⎦ (7.84)

ND1 = [ 1 1 0.94 ] (7.85)

and X1 = {X1, X2}. Thus, the alternatives X1 and X2 are to be considered for a subsequent
analysis.

For the second step, we can construct the fuzzy nonstrict preference relation, the fuzzy strict
preference relation, and the fuzzy set of nondominated alternatives only for alternatives X1

and X2, as follows:

R2 =
[

1 0.94
1 1

]
(7.86)

P2 =
[

0 0
0.06 0

]
(7.87)

ND2 = [ 0.94 1 ] (7.88)

and X2 = {X2}.
Finally, let us consider the application of the third technique. The membership function

of the set of nondominated alternatives for the first fuzzy preference relation R1 is (7.85).
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The fuzzy nonstrict preference relation (7.79) generates the following membership function
of nondominated alternatives:

ND2 = [ 0.14 0.94 1 ] (7.89)

and the fuzzy nonstrict preference relation (7.80) leads to

ND3 = [ 1 0.94 0.94 ] (7.90)

The intersection of (7.85), (7.89), and (7.90) according to (7.76) allows us to construct

ND = [0. 14 0.94 0.94 ] (7.91)

to obtain XND = {X2, X3}.

In characterizing the described techniques of decision-making in a fuzzy environment, it
should be noted that the application of the second technique may lead to solutions different
from the results obtained on the basis of the first technique. However, solutions based on
the first technique and the third technique, which share a single generic basis, may also be
different. At the same time, the third technique is preferential from the substantial point of
view. In particular, the use of the first technique can lead to choosing alternatives with the
degree of nondominance equal to one, though these alternatives are not the best ones from the
point of view of all preference relations. The third technique can generate this result only for
alternatives that are the best solutions from the point of view of all fuzzy preference relations.
It should be stressed that the possibility of obtaining different solutions on the basis of different
approaches (as demonstrated by the example above) is to be considered natural, and the choice
of the approach is a prerogative of a DM.

The described techniques are of a universal nature and have already been used to solve
problems in power engineering (Canha et al., 2007), naval engineering (Botter and Ekel,
2005), and management (Berredo et al., 2005). These techniques have been implemented
within the framework of an interactive system for multicriteria decision-making (that is, the
MDMS), which will be described in the next section.

7.4 Interactive Decision-Making System for Multicriteria Analysis of
Alternatives in a Fuzzy Environment

The MDMS has been developed in the C++ programming language and is executed in the
graphical environment of the Microsoft Windows operating system. Below, we show several
typical windows that appear in the process of initial data preparation (we concentrate here on the
use of two preference formats for the input of preferences: fuzzy estimates and nonreciprocal
fuzzy preference relations) and also several typical windows that appear in the process of
multicriteria decision-making.

An initial window (see Figure 7.5) permits the decision-making process to be started by
indicating the Technique to be used and by defining the number of Alternatives and the number
of Criteria. The screenshot in Figure 7.5 reflects the input information for Example 7.5.
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Figure 7.5 Initial window.

The next two windows (see Figures 7.6 and 7.7) are used to specify the character of the
problem (Maximization or Minimization) for the corresponding criterion and to define fuzzy
estimates for evaluating the alternatives with respect to this criterion (the fuzzy estimates given
in Figure 7.7 are associated with the first criterion considered in the decision-making problem
studied in Example 7.5).

The estimate “Very Small” for evaluating the first alternative with respect to the first
criterion is shown in Figure 7.8. The analytical description of the estimate and its parameters
is given at “Estimate description and its parameters”. The type of the estimate shape (the

Figure 7.6 Defining the nature of the problem (maximization or minimization).
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Figure 7.7 Forming the estimates of alternatives.

basic estimate shape) can be changed by the corresponding choice at “Choose the estimate
shape” (see Figure 7.8), as shown in Figure 7.9. The estimate shape can be modified by
changing parameters at “Estimate description and its parameters” (see Figure 7.8) as shown in
Figure 7.10. The estimate shape can also be modified on an experimental basis by clicking on
one of six buttons at the upper left corner of the screen (see Figure 7.8). Finally, the MDMS

Figure 7.8 Estimate “Very Small”.
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Figure 7.9 Changed type of estimate “Very Small”.

Figure 7.10 Modified estimate of the expression “Very Small”.
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Figure 7.11 Initial preference level.

facilitates modification of a nonstrict preference level of an alternative with respect to the other
alternatives using “The board is for modifying a nonstrict preference level of an alternative
with respect to the others”, as shown in Figures 7.11 and 7.12. The reader should note that
the format of nonreciprocal fuzzy nonstrict preference relations is utilized in this board and
that a DM does not have to specify both R(Xk, Xl ) and R(Xl, Xk). If Xk is better than Xl , the
MDMS assigns one to R(Xk, Xl ) and lets the DM adjust the value of R(Xl , Xk) in conformity
with his/her preferences. Similarly, if Xl is better than Xk , then R(Xl , Xk) is automatically set
equal to one and the MDMS lets the DM adjust the value of R(Xk, Xl ).

Let us assume that the alternatives from Example 7.5 have been evaluated as follows:
F1(X1) = very small, F1(X2) = very small, F1(X3) = small, F2(X1) = very small, F2(X2) =
small, F2(X3) = middle, F3(X1) = large, F3(X2) = middle, and F3(X3) = middle. The de-
scription for all estimates is trapezoidal (see Figure 7.13 (F1(X1) and F1(X2) coincide), Figure
7.14, and Figure 7.15 (F3(X2) and F3(X3) coincide), respectively).

The collected estimates are utilized to construct the fuzzy nonstrict preference relations
given in Figure 7.16 (see (7.78)) for p = 1, in Figure 7.17 (see (7.79)) for p = 2, and in
Figure 7.18 (see (7.80)) for p = 3.

As an example, let us consider the solution to the problem on the basis of the first technique.
The intersection of fuzzy nonstrict preference relations is given in Figure 7.19 (see (7.81)). The
fuzzy strict preference relation is presented in Figure 7.20 (see (7.82)) and permits one to find
the membership function of the fuzzy set of nondominated alternatives given in Figure 7.21
(see (7.83)). Thus, the solution, obtained on the basis of the first technique, is XND = {X2, X3}.
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Figure 7.12 Modified preference level.

Figure 7.13 Estimates for the first criterion.
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Figure 7.14 Estimates for the second criterion.

Figure 7.15 Estimates for the third criterion.
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Figure 7.16 Fuzzy nonstrict preference relation for the first criterion.

Figure 7.17 Fuzzy nonstrict preference relation for the second criterion.

Figure 7.18 Fuzzy nonstrict preference relation for the third criterion.
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Figure 7.19 Intersection of fuzzy nonstrict preference relations.

Figure 7.20 Fuzzy strict preference relation.

Figure 7.21 Membership function of the fuzzy set of nondominated alternatives.
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7.5 Multicriteria Analysis of Alternatives with Fuzzy Ordering
of Criteria

Actually, all the techniques for analyzing 〈X, R〉 models, which were described in Section 7.3,
require the explicit direct or indirect ordering of the criteria. Consequently, it is necessary to
distinguish the results of Orlovsky (1981), which allow a DM to present information related
to the importance of the criteria in the form of a NRFPR:

�(λp, λt ) : � × � → [0, 1], p, t = 1, 2, . . . ,q (7.92)

With the membership functions of the fuzzy sets of nondominated alternatives for all preference
relations (7.75), it is possible to construct the following fuzzy preference relation induced by
the preference relations (7.75) and (7.92):

R�(Xk, Xl ) = max
λp,λt ∈�

min
Xk ,Xl∈X

(NDp(Xk), NDt (Xl),�(λp, λt )), p, t = 1, 2, . . . , q (7.93)

The fuzzy preference relation (7.93) can be considered as a result of aggregating the family of
R p, p = 1, 2, . . . , q, with the use of information reflecting the relative importance of criteria
given in the form of (7.92). Applying (5.35) and (7.54) to (7.93), it is possible to construct
the fuzzy set of nondominated alternatives ND�(Xk). As shown in Orlovsky (1981), the set
ND�(Xk) is to be modified in accordance with the following relationship:

ND�(Xk) = min(ND�(Xk), R�(Xk, Xk)) (7.94)

Example 7.6. We are given a set of alternatives X = {X1, X2, X3} which are to be com-
pared by applying three criteria. The corresponding fuzzy nonstrict preference relations are
as follows:

R1 =
⎡

⎣
1 1 1

0.8 1 0.6
0.4 0.6 1

⎤

⎦ (7.95)

R2 =
⎡

⎣
1 0.4 0.3
1 1 0.7

0.9 0.6 1

⎤

⎦ (7.96)

R3 =
⎡

⎣
1 0.8 0.7

0.4 1 0.8
0.3 0.6 1

⎤

⎦ (7.97)

The information related to the importance of criteria is presented in the following form:

� =
⎡

⎣
1 0.8 0.7
1 1 0.5

0.9 0.7 1

⎤

⎦ (7.98)
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Applying (5.35) to (7.95)–(7.97), we can construct the fuzzy strict preference relations

P1 =
⎡

⎣
0 0.2 0.6
0 0 0
0 0 0

⎤

⎦ (7.99)

P2 =
⎡

⎣
0 0 0

0.6 0 0.1
0.6 0 0

⎤

⎦ (7.100)

and

P3 =
⎡

⎣
0 0.4 0.4
0 0 0.2
0 0 0

⎤

⎦ (7.101)

for the first, second, and third criteria, respectively. Applying (7.54) to (7.99)–(7.101), we
obtain the following membership functions of the fuzzy sets of nondominated alternatives:

ND1 = [ 1 0.8 0.4 ] (7.102)

ND2 = [ 0.4 1 0.9 ] (7.103)

and

ND3 = [ 1 0.6 0.6 ] (7.104)

for the first, second, and third criterion, respectively.
Applying (7.93) to process (7.102)–(7.104) together with (7.98), we obtain

R� =
⎡

⎣
1 0.8 0.8
1 1 0.9

0.9 0.9 0.4

⎤

⎦ (7.105)

By making use of (5.35), we construct corresponding fuzzy strict preference relation

P� =
⎡

⎣
0 0 0

0.2 0 0
0.1 0 0

⎤

⎦ (7.106)

which, according to (7.54), leads to

ND� = [ 0.8 1 1 ] (7.107)

Finally, the application of (7.94) and taking into account that

R�(Xk, Xk) = [ 1 1 0.4 ] (7.108)
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give rise to

ND� = [ 0.8 1 0.4 ] (7.109)

7.6 Multicriteria Analysis of Alternatives with the Concept
of Fuzzy Majority

The fifth technique for the analysis of 〈X, R〉 models presented here utilizes the concept of
fuzzy majority as the aggregation rule for considering the criteria.

In real-world applications, there are cases where it is not reasonable to assume that a good
alternative must simultaneously satisfy all criteria. A DM may consider such a requirement as
being too hard (restrictive) and may prefer a softer one, such as: a good alternative must satisfy
“most” criteria or “at least half” the criteria or a “few” criteria, for instance. It is important
to underline an essential difference between both requirements: in the softer one, it suffices
to satisfy some criteria to a high level, without the need to identify which of them should be
satisfied at this high level. In situations like this, a DM is not obliged to distinguish the priority
or the importance of any criterion.

The use of an AND operator to aggregate all criteria is suitable when it is a necessary
condition that a good alternative Xk must simultaneously satisfy F1 and F2 and . . . and Fq .
Such aggregation is noncompensatory, in the sense that the high level of satisfaction of some
criteria does not relieve the remaining ones from the requirement of being satisfied. On the
other hand, the use of an OR operator is interesting when each alternative is supposed to satisfy
at least one criterion – in other words, when it is sufficient to require that Xk satisfies F1 or
F2 or . . . or Fq . Such aggregation is extremely compensatory in the sense that the high level
of satisfaction of any criterion is sufficient (independently of which criterion is satisfied to a
high level).

However, as already mentioned, there are cases where the relationship among the criteria
does not correspond to a “pure” AND or to a “pure” OR operation. The ordered weighted
average (OWA) operator, originally proposed by Yager (1988), allows us to deal with such
intermediate situations, as it unifies the OR and AND operators in one parameterized operator.

An OWA operator of dimension n corresponds to a mapping function [0, 1]n → [0, 1],
which aggregates a set of n normalized values a1, a2, . . . , an , in such a way that

OWA(a1, a2, . . . , an) =
n∑

i=1

wi bi (7.110)

where bi is the ith largest value among a1, a2, . . . , an and the set of weights w1, w2, . . . , wn

satisfies the conditions wi ∈ [0, 1] and
∑n

i=1 wi = 1 (Yager, 1988).

Example 7.7. The aggregation of three normalized values, a1 = 0.12, a2 = 0.56, and
a3 = 0.42, using OWA with the weights w1 = 0.5, w2 = 0.2, and w3 = 0.3, results in

OWA(0.12, 0.56, 0.42) = 0.56(0.5) + 0.42(0.2) + 0.12(0.3) = 0.4 (7.111)
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Table 7.1 Equivalence between OWA and some aggregation operators

Aggregation operator Weights of OWA

Min w1 = 1, wi = 0, i = 2, 3, . . . , n
Max wn = 1, wi = 0, i = 1, 2, . . . , n − 1
Median if n is odd, w(n+1)/2 = 1, wi = 0 otherwise

if n is odd, wn/2 = 1, wi = 0 otherwise
kth-order statistics wk = 1, wi = 0, i = 1, 2, . . . , n ∧ i �= k
Arithmetic mean wi = 1/n, i = 1, 2, . . . , n

As can be seen in Example 7.7, w1 is associated with the first largest element to be aggregated,
which is 0.56; w2 is associated with the second largest element to be aggregated, which
corresponds to 0.42; and so forth. Hence, it must be clear that each weight wi is associated
with the ith ordered position rather than to a particular element. Because of this particularity, a
relevant issue concerning the use of OWA corresponds to the specification of adequate values
for these weights (Chiclana, Herrera, and Herrera-Viedma, 1998). It is interesting to note
that, by properly adjusting them, it is possible to set the degree of AND and OR inherent
to the parameterized aggregation operator. For instance, when the weights are adjusted as
wn = 1, wi = 0, for i �= q, i = 1, 2, . . . , n − 1, the OWA operator is equivalent to the max
operator, which corresponds to a “pure” OR aggregation. When the weights are adjusted
as w1 = 1, wi = 0, i = 2, 3, . . . , n, the OWA operator is equivalent to the min operator,
which corresponds to a “pure” AND aggregation. As Table 7.1 shows, in addition to min and
max, some other common operators can be implemented as specific cases of OWA (Yager,
1995). However, the major attraction of using OWA in the context of multicriteria analysis
possibly corresponds to the fact that it allows a DM to indirectly specify the weights by using
linguistic quantifiers.

A fuzzy quantifier corresponds to a fuzzy set Q(r ), which reflects the level at which the
r ∈ [0, 1] portion of objects satisfies the concept reflected by Q. Figure 7.22 shows some
examples of linguistic quantifiers. In Yager (1995), fuzzy quantifiers of regular increasing
monotone (RIM) type are used to specify the weights of OWA operators. A RIM fuzzy

Figure 7.22 Fuzzy quantifiers: (a) most; (b) at least q1; (c) all.
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quantifier satisfies some mathematical conditions necessary to guarantee that, as more criteria
are satisfied, the overall satisfaction of a DM cannot decrease:

� Q(0) = 0
� Q(1) = 1
� if r1 > r2, then Q(r1) > Q(r2).

Once a suitable quantifier has been chosen, the value of each weight can be determined as
follows:

wi = Q

(
i

n

)
− Q

(
i − 1

n

)
, i = 1, 2, . . . ,n (7.112)

In the analysis of 〈X, R〉 models, having at hand the nonstrict preference relations for each
criterion, it is possible to obtain a global nonstrict preference relation on the basis of the OWA
operator as shown next (Grabisch, Orlovski, and Yager, 1998):

OWA(R1(Xk, Xl ), R2(Xk, Xl ), . . . , Rq (Xk, Xl)) =
q∑

p=1

wpbp (7.113)

where bp is the pth largest element from R1(Xk, Xl ), R2(Xk, Xl), . . . , Rq (Xk, Xl ) and, as
mentioned previously, the weights wp, p = 1, 2, . . . , q, must be nonnegative and satisfy∑q

p=1 wp = 1.

Example 7.8. Considering the three fuzzy nonstrict preference relations from Example 7.6,
given by (7.95)–(7.97), and the fuzzy quantifier “most”, the global nonstrict preference matrix
can be obtained on the basis of the OWA operator. But, first, it is necessary to calculate the
weights with the use of (7.112) (here, we consider the fuzzy set Q(r ) for the quantifier “most”
as shown in Figure 7.22), which gives

w1 = Q(1/3) − Q(0) = 0.066 − 0 = 0.066 (7.114)

w2 = Q(2/3) − Q(1/3) = 0.733 − 0.066 = 0.667 (7.115)

w3 = Q(1) − Q(2/3) = 1 − 0.733 = 0.266 (7.116)

Then, on the basis of (7.113), we obtain

R =
⎡

⎣
1 0.706 0.613

0.706 1 0.679
0.406 0.6 1

⎤

⎦ (7.117)

In order to clarify how the weights of OWA affect the construction of the global nonstrict
preference, let us observe, for instance, how the values of positions R(X2, X1) and R(X2, X3)
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from (7.117) were obtained

R(X2, X1) = 1 · 0.066 + 0.8 · 0.667 + 0.4 · 0.266 = 0.706 (7.118)

R(X2, X3) = 0.8 · 0.066 + 0.7 · 0.667 + 0.6 · 0.266 = 0.679 (7.119)

It is worth noting in Example 7.8 that, when R(X2, X1) was considered, the weights w1, w2,
and w3 were associated to the respective criteria F2, F1, and F3, as a consequence of the ranking
R2(X2, X1) > R1(X2, X1) > R3(X2, X1). Conversely, when R(X2, X3) was considered, the
weights w1, w2, and w3 were respectively associated to criteria F3, F2, and F1, as a consequence
of the ranking R3(X2, X1) > R2(X2, X1) > R1(X2, X1). Thus, as can be seen, when OWA is
utilized to aggregate across all criteria, given a pair of alternatives Xk and Xl , a high level of
global preference of one alternative over another is achieved if, for some criteria (it does not
matter which of them), a high level of nonstrict preference R p(Xk, Xl ) is observed.

Having at hand the global nonstrict preference matrix, it is possible to exploit the global
relation and obtain a global ranking of the alternatives with the use of the quantifier guided
dominance degree (QGDD)

QGDD(Xk) = OWA(R(Xk, Xl )), l = 1, 2, . . . , n, l �= k (7.120)

and of the quantifier guided nondominance degree (QGNDD)

QGNDD(Xk) = OWA(1 − P(Xl , Xk)), l = 1, 2, . . . , n, l �= k (7.121)

both of them introduced by Chiclana et al. (1996). Whereas QGDD(Xk) reflects the dominance
level of Xk over the other alternatives, in a fuzzy majority sense (or other fuzzy quantifier)
QGNDD(Xk) reflects the level at which Xk is not dominated by a fuzzy majority (or other
fuzzy quantifier) of the remaining alternatives. It is interesting to observe that if we choose
the fuzzy quantifier “all”, which will make OWA work as the min operator, then QGNDD
corresponds to the Orlovsky nondominated degree. QGNDD can be used for choosing the best
alternative and, in case of indifference between two or more alternatives, QGDD can be used
to distinguish them.

Example 7.9. As a continuation of the previous example, it is possible to exploit the global
nonstrict preference relation given by (7.117), with the use of QGNDD(Xk), calculated by
taking into account the fuzzy quantifier “most”. It is worth noting that the calculus of QGNDD
or QGDD for each alternative requires the use of n − 1 weights w1,w2, . . .,wn−1, as the diagonal
of the global nonstrict preference and strict preference matrices are not considered either in
(7.120) or in (7.121), respectively. In this way, we consider

w1 = Q(1/2) − Q(0) = 0.4 − 0 = 0.4 (7.122)

w2 = Q(1) − Q(1/2) = 1 − 0.4 = 0.6 (7.123)

which produces

QGNDD(Xk) = [ 1 1 0.844 ] (7.124)
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A priori, we cannot distinguish X1 and X2, but the choice degree reflected by QGDD allows
us to choose X2 as the best alternative:

QGDD(Xk) = [ 0.650 0.689 0.483 ] (7.125)

Example 7.10. In order to illustrate the importance of choosing a fuzzy quantifier that ade-
quately reflects the requirement desired by a DM, consider three fuzzy nonstrict preference
relations from Example 7.5, given by (7.78)–(7.80). The global nonstrict preference matrix
can be obtained on the basis of OWA and the fuzzy quantifier “all”. First, it is necessary to
calculate the weights with the use of (7.112) (here, we consider the fuzzy set Q(r ) for the
quantifier “all” as shown in Figure 7.22). We obtain

w1 = Q(1/3) − Q(0) = 0 (7.126)

w2 = Q(2/3) − Q(1/3) = 0 (7.127)

w3 = Q(1) − Q(2/3) = 1 (7.128)

Then, making use of (7.113), we have

R =
⎡

⎣
1 0.94 0.14

0.94 1 0.94
0.94 0.94 1

⎤

⎦ (7.129)

which coincides with (7.81), as can be seen.
The computations of weights w1 and w2, realized on the basis of the quantifier “all”, to be

utilized with both QGNDD and QGDD return the results

w1 = Q(1/2) − Q(0) = 0 (7.130)

w2 = Q(1) − Q(1/2) = 1 (7.131)

Finally, on the basis of (7.112) and (7.113), we can obtain the QGNDD and QGDD, respec-
tively:

QGNDD(Xk) = [ 0.2 1 1 ] (7.132)

QGDD(Xk) = [ 0.14 0.94 0.94 ] (7.133)

As we can see, a priori, neither QGNDD nor QGDD allow us to distinguish X2 and X3.
However, with the use of a more relaxed quantifier such as “most”, instead of “all”, we can
obtain the global nonstrict preference matrix

R =
⎡

⎣
1 0.984 0.771

0.984 1 0.984
0.944 0.984 1

⎤

⎦ (7.134)
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as well as the QGNDD and QGDD, respectively, given by

QGNDD(Xk) = [ 0.896 1 1 ] (7.135)

and

QGDD(Xk) = [ 0.856 0.984 0.960 ] (7.136)

Now the alternatives are formally ranked as follows:X2 � X3 � X1. It is interesting to note
that, in this problem, by using the fuzzy quantifier “most” instead of “all”, it became possible
to rank all alternatives, without the need to differentiate the importance of the criteria.

7.7 Multicriteria Analysis of Alternatives Based on an Outranking
Approach (Fuzzy Promethee)

This section focuses on an approach for multicriteria decision-making based on the construc-
tion and exploitation of a binary fuzzy relation named the outranking relation. Formally, the
outranking relation corresponds to a binary fuzzy relation, such as the fuzzy preference rela-
tion that we have been studying. However, it should be stressed that the notion of outranking
relation can be defined, constructed, and exploited independently of the theory of fuzzy pref-
erence structures or of the notion of the fuzzy strict preference relation. Indeed, the outranking
approach differs from the other approaches considered in this chapter in two main aspects:
the outranking approach allows a DM to define the shape of the outranking relation in a very
direct way, just by adjusting a few input parameters; and the exploitation of the outranking
relations constructed by a DM is based on their representation as weighted graphs rather than
on the concept of the fuzzy strict preference relation or fuzzy nondominance set.

The concept of the outranking relation and the first methods for constructing and exploiting
outranking relations were developed by French researchers. Consequently, the outranking
approach for decision-making is usually referred to as the European or French School. Here,
we selected a fuzzy version (Geldermann, Spengler, and Rentz, 2000) of a popular method
from the French School, called Promethee II (Brans and Vincke, 1985), to show how the
outranking approach can be utilized to solve multicriteria decision-making problems in a
fuzzy environment. For other instances of fuzzy versions of the Promethee II method, the
reader can refer to the relevant literature (Goumas and Lygerou, 2000; Halouani, Chabchoub,
and Martel, 2009; Wei-xiang and Bang-yi, 2010).

In Promethee II, the DM preferences, being restricted to a single criterion Fp, are modeled
through a nondecreasing function Sp(Xk, Xl ) named the preference function, which reflects
the preference level of Xk over Xl , according to the following rules:

� if Sp(Xk, Xl ) = 0, both alternatives are considered indifferent to each other;
� if Sp(Xk, Xl ) = 1, Xk is strictly preferred to Xl .

These preference functions are defined in terms of the difference

d = Fp(Xk) − Fp(Xl) (7.137)
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in such a way that they transform the difference in the evaluations of two alternatives into
a preference intensity between 0 and 1. In the fuzzy version of Promethee II considered
here, the evaluation of an alternative Xk over Fp(Xk) is a fuzzy set. Therefore, the difference
D = Fp(Xk) − Fp(Xl) also corresponds to a fuzzy set. For the arithmetic operations on fuzzy
numbers (sets), the reader should refer to Chapter 3.

The original (nonfuzzy) version of Promethee II admits six different generalized models
for the preference function, which cover most of the scenarios encountered in real-world
applications (Brans and Vincke, 1985). Next, those six generalized models are defined for
the difference d given by (7.137). We want to draw attention to the fact that, by applying the
extension principle, these functions can be extended to deal with a fuzzy set D (rather than a
real number d):

� Usual criterion

Sp(Xk, Xl ) = Sp(d) =
{

0 d ≤ 0

1 d > 0
(7.138)

� Quasi-criterion

Sp(Xk, Xl ) = Sp(d) =
{

0 d ≤ ap

1 d > ap

(7.139)

� Pseudo-criterion or level criterion

Sp(Xk, Xl ) = Sp(d) =

⎧
⎪⎪⎨

⎪⎪⎩

0 d ≤ ap

0.5 ap < d ≤ bp

1 d > bp

(7.140)

� Linear criterion

Sp(Xk, Xl ) = Sp(d) =
⎧
⎨

⎩

d

bp
d ≤ bp

1 d > bp

(7.141)

� Criterion with linear preference and an indifference region

Sp(Xk, Xl ) = Sp(d) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 d ≤ ap

d − ap

bp − ap
ap < d ≤

1 d > bp

bp (7.142)

� Gaussian criterion:

Sp(Xk, Xl) = Sp(d) =

⎧
⎪⎪⎨

⎪⎪⎩

0, d ≤ 0

1 − exp

(
−d

2σ 2
p

)
, d > 0

(7.143)



P1: OTA/XYZ P2: ABC
c07 JWST012-Pedrycz September 14, 2010 16:18 Printer Name: Yet to Come

228 Fuzzy Multicriteria Decision-Making: Models, Methods and Applications

Figure 7.23 Usual criterion.

Graphical representations of the preference functions given by (7.138), (7.139), and (7.140)
are shown in Figures 7.23, 7.24, and 7.25, respectively. These three preference functions
are particularly easy to define. Although the quasi-criterion and the pseudo-criterion require
the DM to fix some thresholds according to his/her preferences, in each case, the required
parameters have an intuitive significance. Graphical representations of (7.141), (7.142), and
(7.143) are shown in Figures 7.26, 7.27, and 7.28, respectively. As can be seen, these three
preference functions present a smooth transition between indifference and strict preference,
which permits the DM to make judgments at different levels of preference. In the visualization
of the linear criterion, the slope of the preference function will depend on the value of the
preference threshold bp. In the case of the Gaussian criterion, σp is the distance between the
origin and the point of inflection of the curve Sp(Xk, Xl ) (see Figure 7.28). Finally, in Figure
7.29, one can see the extension principle being applied to obtain an image of the fuzzy set
D = (d1, d2, d3) with a triangular membership function, under a preference function Sp(d),
defined as given by (7.142).

The global preferences of a DM are reflected by the weighted mean of the preference
functions restricted to each criterion, as follows:

�(Xk, Xl ) =
q∑

p=1

λp Sp(Xk, Xl) (7.144)

where λp, p = 1, 2, . . . , q, are the importance factors associated with each criterion. Usually
they are numbers satisfying conditions (4.15), (4.16). Promethee II does not provide specific
guidelines for determining these importance factors, but assumes that a DM is able to weight
the criteria appropriately. Again, the reader should be aware of the need to implement the
operations of multiplication and addition between fuzzy sets in (7.144).

Figure 7.24 Quasi-criterion.
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Figure 7.25 Pseudo-criterion.

Figure 7.26 Criterion with linear preference.

Figure 7.27 Criterion with linear preference and an indifference region.

Figure 7.28 Criterion with Gaussian preference function.
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Figure 7.29 The use of the extension principle to a preference function given by (7.142).

It is worth noting that �(Xk, Xl) reflects the global or aggregated preference level of Xk

over Xl . From the matrix representation of the global preferences for all pairs of alternatives, a
graph can be drawn in such a way that each alternative is represented by a node and each global
preference relation is represented by an arc. Hence, between each pair of nodes (Xk, Xl ), there
are always two arcs, one associated with �(Xk, Xl ) and the other with �(Xl, Xk), as shown
in Figure 7.30. Leaving φout and entering flows φin at each node, which are given by

φout (Xk) =
∑

∀Xl∈X

�(Xk, Xl) (7.145)

and

φin(Xk) =
∑

∀Xl∈X

�(Xl , Xk) (7.146)

play an important role in Promethee II. These two reflect a measure of the outranking quality
and of the outranked quality of Xk and the difference between the leaving and the entering
flows, that is, the net flow of each node Xk ∈ X

φ(Xk) = φout (Xk) − φin(Xk) (7.147)

is utilized to derive a complete ranking of the alternatives. Here, as in Geldermann, Spengler,
and Rentz (2000), the ranking of the alternatives is derived from the “defuzzified” net flow.

Figure 7.30 Arcs symbolizing the global preference relations between Xk and Xl .
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For converting fuzzy sets into real values (that is, for the operation of “defuzzification”), the
center of area

φdefuzz =
∫

x .φ(x) dx∫
φ(x) dx

(7.148)

is utilized.
Finally, a complete ranking can be induced on the basis of the defuzzified net flow as

follows:

� if φdefuzz(Xk) > φdefuzz(Xl), then Xk is preferred to Xl ;
� if φdefuzz(Xk) = φdefuzz(Xl), then Xk is indifferent to Xl .

Example 7.11. The multicriteria decision-making problem related to selecting a site for the
construction of a new hospital is studied in Vahidnia, Alesheikh, and Alimohammadi (2009).
Here, we consider a simplified version of this problem, in which six sites are to be ranked, by
taking into account the following four criteria:

1. Distance from arterial streets (minimization criterion)
2. Cost of land (minimization criterion)
3. Population density (maximization criterion)
4. Average travel time to arrive at the nearest existing hospital (maximization criterion).

The fifth criterion which could be considered is associated with the pollution level present
at each site. However, as the sites considered here do not significantly differ with respect
to this criterion, we decided to eliminate it from the subsequent multicriteria analysis. It is
worth noting that both F1 and F2 are to be minimized whereas both F3 and F4 are to be
maximized. Figure 7.31 presents the fuzzy scores utilized for evaluating the third criterion,
F3, the population density. Table 7.2 gives the evaluation matrix of the alternatives.

Next, this problem is studied by means of the fuzzy version of Promethee II. The input
parameters provided by a DM for the execution of this method are listed in Table 7.3. As in

Figure 7.31 Valuation of criterion F3 (population density).
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Table 7.2 Evaluation matrix of the alternatives

F1(Xk) (m) F2(Xk) ($/m2) F3(Xk) F4(Xk) (minutes)

X1 0 28 middle 22
X2 350 24 high 17
X3 150 18 high 12
X4 500 15 middle 10
X5 50 8 low 7
X6 300 10 very high 5

Vahidnia, Alesheikh, and Alimohammadi (2009), a DM considered the average travel time to
be the most important criterion and the population density to be the least important criterion
for the decision.

Table 7.4 shows the leaving φout , entering φin , and net φ flows, which are determined for
each alternative by means of (7.145), (7.146), and (7.147), respectively. Figure 7.32 shows
the fuzzy sets corresponding to the net flow of each alternative. After converting the fuzzy net
flows into real-valued net flows with the use of (7.148) (refer to Table 7.5), the final ranking
of the alternatives is as follows: X4 � X2 � X6 � X3 � X5 � X1.

7.8 Application Examples

The first example given below demonstrates the application of three basic techniques for
analyzing 〈X, R〉 models.

Example 7.12. The problem of substation planning in a power system taking into account the
uncertainty of information has been considered in Fontoura Filho, Ales, and Tortelly (1994).
Its practical application is associated with a group of 138/13.8 kV substations of a power
utility. In particular, a careful analysis has been carried out to select a solution from three
alternatives on the basis of their total costs, where the uncertainty of interest rates is modeled
as trapezoidal membership functions. Details about the membership functions of alternative
costs are given in Table 7.6 and are also illustrated in Figure 7.33.

It is evident that the selection of the most preferable alternative is hampered: the difference
between the alternatives X1 and X2 is equal to 0.38% for the left bounds of the corresponding
membership functions for a certainty of 70% that is accepted in Fontoura Filho, Ales, and

Table 7.3 Input parameters of Promethee provided by a DM

Preference function specification Importance factor

F1 Linear criterion, b1 = 50 m 0.25
F2 Linear criterion, b2 = 5 $/m2 0.25
F3 Usual criterion 0.2
F4 Quasi-criterion, a4 = 3 min 0.3
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Table 7.4 Leaving φout , entering φin and net φ flows

φout φin φ

X1 (2.75, 2.95, 3.55) (1.2, 1.8, 2.2) (0.55, 1.15, 2.35)
X2 (1.65, 2.25, 2.65) (2.3, 2.5, 3.1) (−1.45, −0.25, 0.35)
X3 (1.85, 2.45, 2.85) (1.75, 1.95, 2.55) (−0.7, 0.5, 1.1)
X4 (0.95, 1.15, 1.75) (2.35, 2.95, 3.35) (−2.4, −1.8, −0.6)
X5 (2.1, 2.1, 2.5) (1.35, 2.15, 2.15) (−0.05, −0.05, −1.15)
X6 (1.7, 2.5, 2.5) (2.05, 2.05, 2.45) (−0.75, 0.45, 0.45)

Figure 7.32 Fuzzy net flow.

Table 7.5 Defuzzified net φdefuzz flows

X1 X2 X3 X4 X5 X6

φdefuzz 1.35 −0.45 0.3 −1.6 0.35 0.05

Table 7.6 Total costs (US$ thousand) of alternatives

Alternative 1 2 3 4

1 20 291 22 007 22 769 27 054
2 21 058 21 831 22 378 25 865
3 21 977 22 749 23 098 24 276

22000 24000

2 3

1
0.912
0.700

F

26000 28000 R

Figure 7.33 Total costs of alternatives.
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Tortelly (1994), but does not give grounds for proceeding with a convincing decision. This
may also be illustrated by analyzing a fuzzy nonstrict preference relation

R1 =
⎡

⎣
1 1 1
1 1 1
1 0.912 1

⎤

⎦ (7.149)

constructed on the basis of Figure 7.33. Applying (5.35) to (7.149), we obtain the following
fuzzy strict preference relation:

P =
⎡

⎣
0 0 0
0 0 0.088
0 0 0

⎤

⎦ (7.150)

Using (7.54), we can obtain the membership function of the fuzzy set of nondominated
alternatives

ND = [ 1 1 0.912 ] (7.151)

which indicates that the alternatives X1 and X2 are indistinguishable.
Taking this into account, we can consider the indices “Flexibility of development”

and “Damage to agriculture” as additional criteria denoted by F2(Xk) and F3(Xk).
The membership functions corresponding to the normalized fuzzy values S(F) =
{very small, small, middle, large, very good} of the linguistic variables Flexibility of devel-
opment and Damage to agriculture, which can be used to estimate F2(Xk) and F3(Xk), are
illustrated in Figure 7.34.

Assume that the alternatives have received the following estimates: F2(X1) =large,
F2(X2) =large, F2(X3) =very large for the second criterion and F3(X1) =small,
F3(X2) =middle, F3(X3) =large for the third criterion. Taking this into account as well as the
need to maximize F2(Xk) and to minimize F3(Xk), it is possible to construct the matrices of

0.938
0.909
0.625

F

very small small middle large very large

R

Figure 7.34 Membership functions for normalized fuzzy values.
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the fuzzy nonstrict preference relations

R2 =
⎡

⎣
1 1 0.909
1 1 0.909
1 1 1

⎤

⎦ (7.152)

and

R3 =
⎡

⎣
1 1 1

0.938 1 1
0.625 0.938 1

⎤

⎦ (7.153)

for the second and third criterion, respectively.
Applying the first technique, we obtain the intersection of (7.149), (7.152), and (7.153) as

follows:

R =
⎡

⎣
1 1 0.909

0.938 1 0.909
0.625 0.912 1

⎤

⎦ (7.154)

Applying (5.35) to (7.154), we construct the fuzzy strict preference relation

P =
⎡

⎣
0 0.062 0.274
0 0 0
0 0.03 0

⎤

⎦ (7.155)

which permits us, using (7.54), to obtain the membership function of the fuzzy set of nondom-
inated alternatives

ND = [ 1 0.938 0.716 ] (7.156)

The alternative 1 has the maximum degree of nondominance and it is natural to consider it as
the solution, that is, XND = {X1}. Thus, we have obtained the solution without applying the
convolution (7.70).

Let us consider the second technique with the criteria being arranged in the following order
of importance: p = 1, p = 2, and p = 3.

Following (5.35), (7.54), and (7.55), we obtain, on the basis of (7.149), the result coinciding
with (7.151). This is obvious, and X1 = {X1, X2}. Thus, the alternatives X1 and X2 may be
considered for a sequent analysis, and from (7.152) we can proceed with the second step

R2 =
[

1 1
1 1

]
(7.157)

which leads to

ND2 = [1 1] (7.158)
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and X2 = {X1, X2}. The second step does not allow us to narrow down the decision uncertainty
region.

From (7.153), we can proceed with the third step

R =
[

1 1
0.938 1

]
(7.159)

Then

ND3 = [1 0.938] (7.160)

and X3 = {X1}.
If the criteria were arranged in another order, one can anticipate that it would be possible

to obtain another solution. For instance, it is not difficult to verify that if p = 2, p = 3, and
p = 1, then X3 = {X3}.

Finally, let us consider the application of the third technique. The membership function of
the set of nondominated alternatives for the first fuzzy preference relation ND1 = {Xk} is as
given by (7.151). Using (7.152), we construct

ND2 = [0.909 0.909 1] (7.161)

In an analogous way, the use of (7.153) leads to

ND3 = [1 0.938 0.625] (7.162)

The intersection of (7.151), (7.161), and (7.162) gives rise to

ND = [0.909 0.909 0.625] (7.163)

and this implies that XND = {X1, X2}.
In this manner, the third technique does not permit one to choose a unique alternative. It

allows only the exclusion of alternative X3 from further consideration: information given by
(7.151), (7.161), and (7.162) is not sufficient to choose a unique alternative.

Thus, the first technique allows one to choose the alternative X1. The second technique
indicates the alternative X1 (for the order of importance: p = 1, p = 2, and p = 3) as well. The
third technique only permits one to eliminate the alternative X3.

The second example below demonstrates the applicability of the results presented in Section
7.3 to analyze problems with nonfuzzy preference relations as well.

Example 7.13. The direct development of an integrated project by an enterprise presents
considerable difficulties. There exist several ways around these difficulties:

1. Training proper professionals.
2. Inviting new professionals capable of developing a project.
3. Contracting another enterprise with the necessary profile.
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The decision made by a manager is to be based on applying the following criteria:

1. Financial expenditures
2. Project development quality
3. Project development duration.

Thus, we have three alternatives X1, X2, and X3, which are to be analyzed from the point of
view of these three criteria. Let us apply the first technique, which is given in Section 7.3, by
taking into account, if necessary, the following importance factors: λ1 = 0.6, λ2 = 0.2, and
λ3 = 0.2.

Assume that the manager thinks that X1 is as good as X2 and that X1 is extremely better
than X3 from the point of view of the first criterion. These judgments permit the following
nonstrict preference relation to be constructed:

R1 =
⎡

⎣
1 1 1
1 1 0
0 0 1

⎤

⎦ (7.164)

The preferences expressed from the point of view of the second criterion are the following: X2

is extremely better than X1 and X3 is extremely better than X1. This allows the construction
of the second nonstrict preference relation

R2 =
⎡

⎣
1 0 0
1 1 0
1 0 1

⎤

⎦ (7.165)

Finally, the preferences from the point of view of the third criterion are presented as follows:
X1 is as good as X2 and X3 is extremely better than X1. This allows construction of the third
nonstrict preference relation

R3 =
⎡

⎣
1 1 0
1 1 0
1 0 1

⎤

⎦ (7.166)

The intersection of (7.164)–(7.166) leads to the formation of the following nonstrict preference
relation:

R =
⎡

⎣
1 0 0
1 1 0
0 0 1

⎤

⎦ (7.167)

With the use of (5.35), the following strict preference relation is derived from (7.167):

P =
⎡

⎣
0 0 0
1 0 0
0 0 0

⎤

⎦ (7.168)
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It also provides

ND = [ 0 1 1 ] (7.169)

on the basis of (7.54). In such a way, we can bring the convolution (7.70) into consideration
by applying the importance factors given above as follows:

T = 0.6

⎡

⎣
1 1 1
1 1 0
0 0 1

⎤

⎦ + 0.2

⎡

⎣
1 0 0
1 1 0
1 0 1

⎤

⎦ + 0.2

⎡

⎣
1 1 0
1 1 0
1 0 1

⎤

⎦ =
⎡

⎣
1 0.8 0.6
1 1 0

0.4 0 1

⎤

⎦

(7.170)

It is not difficult to see that (7.170) generates the following strict preference relation:

P =
⎡

⎣
0 0 0.2

0.2 0 0
0 0 0

⎤

⎦ (7.171)

The membership function of the set of nondominated alternatives, which corresponds to
(7.171), is as follows:

NDT = [ 0.8 1 0.8 ] (7.172)

Finally, the intersection of (7.169) and (7.172), realized in accordance with (7.71), leads to

Q = [ 0 1 0.8 ] (7.173)

Given this, we define XND = {X2}, meaning that a suitable alternative is to recommend inviting
new professionals capable of developing the project.

The third example demonstrates the analysis of 〈X, R〉 models with fuzzy ordering of criteria.

Example 7.14. The problem of choosing a local reactive power source at a power system
bus with reactive power shortage is considered in Orudjev (1983). The following alternatives
are considered:

1. Controlled thyristor reactor with constantly connected capacitor banks.
2. Controlled thyristor reactor with capacitor banks connected through the reactor.
3. Synchronous compensator.
4. Capacitor banks with smooth thyristor control.

The decision is to be made on the basis of applying the following criteria:

1. Reliability
2. Investment
3. Speed of control.
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The fuzzy nonstrict preference relations corresponding respectively to the first, second, and
third criteria are as follows:

R1 =

⎡

⎢⎢⎣

1 0.7 0.4 0.8
0 1 0.2 1

0.5 0.3 1 0.1
0.8 0.4 0.2 1

⎤

⎥⎥⎦ (7.174)

R2 =

⎡

⎢⎢⎣

1 0.1 0.5 0.8
0 1 0.8 0.6

0.7 0.4 1 0.7
0.4 0.8 0.2 1

⎤

⎥⎥⎦ (7.175)

R3 =

⎡

⎢⎢⎣

1 0.9 0.12 0.3
0.3 1 0.8 0.5
0.3 0.15 1 0.7
0.9 0.6 0.2 1

⎤

⎥⎥⎦ (7.176)

The information related to the importance of criteria is presented in the following form:

� =
⎡

⎣
1 0.8 0.6

0.5 1 0.7
0.2 0.1 1

⎤

⎦ (7.177)

The application of (5.35) to (7.174)–(7.176) results in the construction of the corresponding
fuzzy strict preference relations and, then, the use of (7.54) generates the following membership
functions of the fuzzy sets of nondominated alternatives:

ND1 = [ 0.9 0.3 0.9 0.4 ] (7.178)

ND2 = [ 0.8 0.8 0.6 0.5 ] (7.179)

and

ND3 = [ 0.4 0.4 0.35 0.5 ] (7.180)

for the first, second, and third criterion, respectively.
The application of (7.93) to process (7.178)–(7.180) together with (7.177) leads to the

relation

R� =

⎡

⎢⎢⎣

1 0.8 0.9 0.5
0.8 0.9 0.5 0.5
0.9 0.8 0.9 0.8
0.5 0.5 0.5 0.5

⎤

⎥⎥⎦ (7.181)

The application of (5.35) to (7.181) to construct the corresponding fuzzy strict preference
relations and, then, the use of (7.54) form the following membership function of the fuzzy set
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of nondominated alternatives:

R̄ND
� (Xk) = [ 1 0.7 1 0.7 ] (7.182)

Finally, the application of (7.94), considering that

R�(Xk, Xk) = [ 1 0.9 0.9 0.5 ] (7.183)

leads to

ND� = [ 1 0.7 0.9 0.5 ] (7.184)

Thus, a controlled thyristor reactor with constantly connected capacitor banks should be
selected.

The last example below demonstrates the analysis of 〈X, R〉 models by applying the concept
of majority.

Example 7.15. The multicriteria decision-making problem related to energy planning is
considered in Beccali, Cellura, and Ardente (1998). It consists of the selection of the most
appropriate technology in a renewable energy diffusion plan for Sardinia. Here, we will
consider the following six criteria:

1. Targets of primary energy saving on a regional scale.
2. Sustainability according to greenhouse pollutant emissions.
3. Consistency of installation and maintenance requirements with local technical conditions.
4. Continuity and predictability of performances.
5. Market maturity.
6. Compatibility with the political, legislative, and administrative situation.

The first two criteria are of a quantitative character. The third, fourth, and sixth criteria are
of a qualitative character and can be evaluated through the set of three normalized fuzzy
values S(F) = {small, middle, large} shown in Figure 7.35. The fifth criterion is also of a
qualitative character and can be evaluated through the set of five normalized fuzzy values
S(F) = {very small, small, middle, large, very large} shown in Figure 7.35 as well.

The following four options of energy sources are considered as alternatives:

1. Solar (domestic solar water heaters).
2. Wind (wind turbines of grid-connected type).
3. Hydraulic (hydro plants in derivation schemes).
4. Biomass (combined heat and power plants fed by agricultural wastes or energy crops).

Given the evaluation matrix of the alternatives (Table 7.7), it is necessary to transform the
quantitative measures related to criteria F1(Xk) and F2(Xk) and the qualitative estimates related
to criteria Fp(Xk), p = 3, 4, . . . , 6, into the corresponding nonstrict preference relations.

To normalize the values of F1(Xk), we can apply (4.6) by taking into account that F1(Xk) is
to be maximized, with max F1(Xk) = 3000 and min F1(Xk) = 500. This gives the following
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Figure 7.35 Membership functions of normalized fuzzy values.

results: 0.30, 0.92, 0.03, and 0.55 for X1, X2, X3, and X4, respectively. Applying the trans-
formation function (6.58), we obtain the following fuzzy nonstrict preference relation for the
first criterion:

R1 =

⎡

⎢⎢⎣

1 0.106 1 0.297
1 1 1 1

0.01 0.001 1 0.003
1 0.357 1 1

⎤

⎥⎥⎦ (7.185)

In a similar manner, to normalize the values of F2(Xk), we can apply (4.5) by taking into
account that F2(Xk) is to be minimized, with max F2(Xk) = 70 and min F2(Xk) = 40. This
gives the following results: 0.70, 0.73, 0.73, and 0.44 for X1, X2, X3, and X4, respectively.
Also applying the transformation function (6.58), we obtain the following nonstrict preference

Table 7.7 Evaluation matrix of the alternatives

Alternative F1(Xk) (TJ/year) F2(Xk) (g CO2/MJ) F3(Xk) F4(Xk) F5(Xk) F6(Xk)

X1 1255 49 large small very large small
X2 2790 48 small small large small
X3 574 48 middle large very large large
X4 1884 56.7 small large large middle
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relation for the second criterion:

R2 =

⎡

⎢⎢⎣

1 0.919 0.919 1
1 1 1 1
1 1 1 1

0.395 0.363 0.363 1

⎤

⎥⎥⎦ (7.186)

The fuzzy nonstrict preference relations for criteria of a qualitative character are as follows:

R3 =

⎡

⎢⎢⎣

1 1 1 1
0 1 0.167 1

0.167 1 1 1
0 1 0.167 1

⎤

⎥⎥⎦ (7.187)

R4 =

⎡

⎢⎢⎣

1 1 0 0
1 1 0 0
1 1 1 1
1 1 1 1

⎤

⎥⎥⎦ (7.188)

R5 =

⎡

⎢⎢⎣

1 1 1 1
0.167 1 0.167 1

1 1 1 1
0.167 1 0.167 1

⎤

⎥⎥⎦ (7.189)

R6 =

⎡

⎢⎢⎣

1 1 0 0.167
1 1 0 0.167
1 1 1 1
1 1 0.167 1

⎤

⎥⎥⎦ (7.190)

The global nonstrict preference relation, obtained on the basis of (7.113) and considering the
fuzzy quantifier “most”, is given by

R =

⎡

⎢⎢⎣

1 0.978 0.706 0.543
0.778 1 0.178 0.778
0.778 1 1 1
0.576 0.830 0.288 1

⎤

⎥⎥⎦ (7.191)

The guided quantifier nondominance degree is obtained here also using the fuzzy quantifier
“most”:

QGNDD(Xk) = [ 0.959 0.643 1 0.810 ] (7.192)

Thus, the ranking of alternatives is X3 � X1 � X4 � X2. But, particularly, in a further analysis,
it is interesting to observe, in Table 7.7, that although alternative X3 has the best evaluation
for the second, fourth, fifth, and sixth criteria, it has the worst evaluation for the first criterion.
Does X3 remain in first position if the DM requires all criteria to be highly satisfied and utilizes
the fuzzy quantifier “all” instead of “most”? The reader is invited to analyze this question in
Problem 7.10 of the Exercises section below.
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7.9 Conclusions

We have discussed the questions of the emergence and importance of problems of multicri-
teria evaluation, comparison, choice, prioritization, and/or ordering of alternatives. Diverse
techniques for the multicriteria analysis of alternatives in a fuzzy environment developed on
the basis of fuzzy preference modeling have been considered. The first technique is related to
constructing and analyzing the membership function of the set of nondominated alternatives
simultaneously considering all criteria. The second technique is of a lexicographic character
and consists of a step-by-step analysis of preference relations. The third technique is based
on building and aggregating the membership functions of the sets of nondominated alterna-
tives for each preference relation. The fourth technique provides a way for fuzzy ordering of
criteria, considering the information on their importance provided by a DM in the form of a
nonreciprocal fuzzy preference relation. The fifth technique for the analysis of 〈X, R〉 models
uses the concept of fuzzy majority as the aggregation rule for considering the criteria. Finally,
a method from the French School, that is, the fuzzy version of Promethee, offers an approach
for analyzing 〈X, R〉 models based on the exploitation of a specific type of fuzzy preference
relation, named the outranking relation. The net flow observed in the weighted graph of out-
ranking relations provides a measure of the effective outranking quality of each alternative.
The application of the proposed techniques has been illustrated by practical examples.

The discussed techniques can lead to different solutions. However, this is to be considered
natural and intuitively appealing. We must emphasize here that the choice of a specific tech-
nique is a prerogative of the DM. This selection has to be based on the essence of the problem
and the possible sources of information and its uncertainty.

Exercises

Problem 7.1. Construct the membership function of the fuzzy set of nondominated alternatives
for the following fuzzy nonstrict preference relation:

R =

⎡

⎢⎢⎣

1 0.5 1 0.3
1 1 0.8 0.7

0.6 1 1 0.6
1 0.9 0.4 1

⎤

⎥⎥⎦

Problem 7.2. Verify the existence of the nonfuzzy solution in the decision-making problem
described by the following fuzzy nonstrict preference relation:

R =

⎡

⎢⎢⎣

1 0.6 1 0.5
0.4 1 0.8 0.2
1 0.8 1 0.3

0.9 0.9 0.7 1

⎤

⎥⎥⎦
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Problem 7.3. Apply the first technique for analyzing 〈X, R〉 models to solve the problem
which includes the following fuzzy nonstrict preference relations:

R1 =
⎡

⎣
1 1 1
1 1 1

0.8 0.8 1

⎤

⎦

R2 =
⎡

⎣
1 0.8 0.6
1 1 0.8
1 1 1

⎤

⎦

R3 =
⎡

⎣
1 1 1

0.8 1 1
0.8 1 1

⎤

⎦

considering, if necessary, the following: λ1 = 0.4, λ2 = 0.3, and λ3 = 0.3.

Problem 7.4. Apply the third technique for analyzing 〈X, R〉 models to solve the problem
which includes the fuzzy nonstrict preference relations given in Problem 7.3 by considering,
if necessary, λ1 = 0.5, λ2 = 0.3, and λ3 = 0.2.

Problem 7.5. Apply the second technique for analyzing 〈X, R〉models to solve the problem
which includes the fuzzy nonstrict preference relations (7.149), (7.152), and (7.153) with the
following order of their importance: p = 3, p = 2, and p = 1.

Problem 7.6. Solve the problem formulated in Example 7.12 if the alternatives have the
estimates

F1(X1) = middle, F1(X2) = middle, and F1(X3) = large
F2(X1) = small, F2(X2) = middle, and F2(X3) = large
F3(X1) = large, F3(X2) = middle, and F3(X3) = middle

from the normalized fuzzy values of Figure 7.7.

Problem 7.7. Verify the possibility of changing the solution (alternative X1) of the problem
defined by Example 7.12, if the information related to the importance of criteria is presented
in the following form:

� =
⎡

⎣
1 0.5 0.2

0.8 1 0.1
0.6 0.7 1

⎤

⎦

Problem 7.8. Given the set of normalized values {0.5, 0.1, 0.2, 0.7}, obtain the set of weights
associated with the fuzzy quantifier “at least three” (it is illustrated in Figure 7.22) to be
utilized by OWA. Calculate the aggregated value.
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Table 7.8 Evaluation of F4(Xk)

F4(Xk) (min)

X1 (18, 22, 24)
X2 (12, 17, 21)
X3 (8, 12, 16)
X4 (8, 10, 16)
X5 (4, 7, 10)
X6 (2, 5, 6)

Problem 7.9. Examine Examples 7.5 and 7.10 and explain why (7.129) coincides with (7.81).

Problem 7.10. Solve the problem analyzed in Example 7.15, but now use the fuzzy quantifier
“all” instead of “most”. Does X3 remain in first position in the new ranking? Try to explain
why it remains (or not) in the same position, taking into account the evaluation matrix in
Table 7.7.

Problem 7.11. Solve the problem considered in Example 7.11, but now consider the fuzzy
estimates for the criterion F4(Xk) given in Table 7.8.
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8
Generalization of a Classic
Approach to Dealing with
Uncertainty of Information for
Multicriteria Decision Problems

This chapter focuses on the generalization of the classic approach to dealing with uncertainty
of information (based on constructing and analyzing payoff matrices defining effects, which
result from the occurrence of different combinations of solution alternatives and different
states of nature) in monocriteria decision-making for multicriteria problems. The questions
of constructing aggregated payoff matrices, modifying the choice criteria, and evaluating
particular and aggregated risks (regrets) in decision-making are discussed. The generalization
of the classic approach as well as the use of the analysis of 〈X, M〉 and 〈X, R〉 models allows us
to construct a general scheme of multicriteria decision-making in the presence of uncertainty
of information. This scheme is directed at using the available quantitative information to
the highest extent to reduce the decision uncertainty regions. If a resolving capability of the
processing of quantitative information does not lead to unique solutions, the scheme presumes
the application of qualitative information based on the knowledge, experience, and intuition
of experts involved in the decision-making process.

8.1 Classic Approach to Dealing with Uncertainty of Information

The classic approach (Luce and Raiffa, 1957; Raiffa, 1968; Webster, 2003) encountered when
considering uncertainty, which comes with a broad range of practical applications (Kaufman,
1961; Belyaev, 1977), is based on the assumption that the underlying analysis is carried out for
the given solution alternatives (strategies) Xk , k = 1, 2, . . . , K , and the given representative
combinations of initial data or states of nature (scenarios) Ys , s = 1, 2, . . . , S. Making use
of alternatives and scenarios, we associate with them the corresponding payoff matrix in
the form shown in Table 8.1.

Fuzzy Multicriteria Decision-Making: Models, Methods and Applications          Witold Pedrycz, Petr Ekel and Roberta Parreiras
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Table 8.1 Payoff matrix

Y1 . . . Ys . . . YS

X1 F(X1, Y1) . . . F(X1, Ys) . . . F(X1, YS)
. . . . . . . . . . . . . . . . . .

Xk F(Xk, Y1) . . . F(Xk, Ys) . . . F(Xk, YS)
. . . . . . . . . . . . . . . . . .

X K F(X K , Y1) . . . F(X K , Ys) . . . F(X K , YS)

The payoff matrix quantifies the effects (or consequences) of actions Xk , i = 1, 2, . . . , K ,
for the corresponding states of nature Ys , s = 1, 2, . . . , S.

Belyaev (1977) presented the following basic phases to support the application of the classic
approach when dealing with the uncertainty factor:

� mathematical formulation of the problem;
� selection of the representative combinations of initial data (selection of the states of nature);
� determination and preliminary analysis of solution alternatives;
� construction of the payoff matrix;
� analysis of the payoff matrix and the choice of the rational solution alternatives;
� selection of the final solution.

Without discussing in detail the phases identified above, it is worth emphasizing that an
analysis of the payoff matrices and the choice of the rational solution alternatives are based
on the use of the corresponding choice criteria (Luce and Raiffa, 1957; Raiffa, 1968; Webster,
2003). Those utilized most frequently and exhibiting a general character are the criteria of
Wald, Laplace, Savage, and Hurwicz. To better understand the nature of these criteria, the
matrix presented in Table 8.1 is extended and shown in Table 8.2, in which we take into
account recommendations presented by Belyaev (1977). This extension is associated with the
incorporation of the following estimates:

� The objective function maximum level described as

Fmax(Xk) = max
1≤s≤S

F(Xk, Ys) (8.1)

This level is determined for the given solution alternative and, as the name stipulates,
is the most optimistic estimate when the objective function is to be maximized or the

Table 8.2 Payoff matrix with characteristic estimates

Y1 . . . Ys . . . YS Fmax(Xk) Fmin(Xk) F(Xk) rmax(Xk)
X1 F(X1, Y1) . . . F(X1, Ys) . . . F(X1, YS) Fmax(X1) Fmin(X1) F(X1) rmax(X1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xk F(Xk, Y1) . . . F(Xk, Ys) . . . F(Xk, YS) Fmax(Xk) Fmin(Xk) F(Xk) rmax(Xk)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X K F(X K , Y1) . . . F(X K , Ys) . . . F(X K , YS) Fmax(X K ) Fmin(X K ) F(X K ) rmax(X K )
Fmax(Ys) Fmax(Y1) . . . Fmax(Ys) . . . Fmax(YS)
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most pessimistic estimate if the objective function is to be minimized for the considered
solution alternative.

� The objective function minimum level

Fmin(Xk) = min
1≤s≤S

F(Xk, Ys) (8.2)

computed for the given solution alternative. This is the most pessimistic estimate when the
objective function is to be maximized or is treated as the most optimistic estimate if the
objective function is to be minimized for the considered solution alternative.

� The objective function average level

F(Xk) = 1

S

S∑

s=1

F(Xk, Ys) (8.3)

determined for the given solution alternative.
� The risk (regret) maximum level

rmax(Xk) = max
1≤s≤S

r (Xk, Ys) (8.4)

where r (Xk, Ys) is an over-expenditure which takes place under a combination of the state
of nature Ys and the choice of the solution alternative Xk instead of the solution alternative
that is locally optimal for the given Ys . The estimates of over-expenditures provide a certain
description of the situation as they show a relative difference in the objective function values
under the choice of one solution alternative in place of another. In fact, the over-expenditures
characterize a damage level associated with the uncertainty of the situation itself.

To determine risks (regrets) r (Xk, Ys), it is necessary to define the maximum value of the
objective function (if it is to be maximized, as considered in Table 8.2) for each combination
of the state of nature Ys (for each column of the payoff matrix):

Fmax(Ys) = max
1≤k≤K

F(Xk, Ys) (8.5)

It is evident that if the objective function is to be minimized, it is necessary to define
its minimum for each combination of the state of nature Ys (for each column of the
payoff matrix):

Fmin(Ys) = min
1≤k≤K

F(Xk, Ys) (8.6)

The risk associated with any solution alternative Xk and any state of nature Ys can be
evaluated as

r (Xk, Ys) = Fmax(Ys) − F(Xk, Ys) (8.7)

if the objective function is to be maximized or

r (Xk, Ys) = F(Xk, Ys) − Fmin(Ys) (8.8)

if the objective function is to be minimized.
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Table 8.3 Risk matrix

Y1 . . . Ys . . . YS rmax(Xk)
X1 r (X1, Y1) . . . r (X1, Ys) . . . r (X1, YS) rmax(X1)
. . . . . . . . . . . . . . . . . . . . .

Xk r (Xk, Y1) . . . r (Xk, Ys) . . . r (Xk, YS) rmax(Xk)
. . . . . . . . . . . . . . . . . . . . .

X K r (X K , Y1) . . . r (X K , Ys) . . . r (X K , YS) rmax(X K )

Carrying out calculations based on (8.7) or (8.8) for all Xk , k = 1, 2, . . . , K , and Ys ,
s = 1, 2, . . . , S, we obtain the risk (regret) matrix shown in Table 8.3. Note that any column
of this matrix includes at least a single zero element, r (Xk, Ys) = 0.

8.2 Choice Criteria

The choice criteria of Wald, Laplace, Savage, and Hurwicz are based on the use of the
characteristic estimates Fmax(Xk), Fmin(Xk), F(Xk), and rmax(Xk), defined by (8.1)–(8.4). To
focus our discussion, the choice criteria are represented under the assumption that the objective
function is to be maximized.

The Wald criterion utilizes the estimate Fmin(Xk) and stipulates that one has to choose the
solution alternative X W , for which this estimate attains a maximum, that is,

max
1≤k≤K

Fmin(Xk) = max
1≤k≤K

min
1≤s≤S

F(Xk, Ys) (8.9)

The Laplace criterion uses the estimate F(Xk) and is oriented to choose the solution alternative
X L , for which this estimate attains its maximum:

max
1≤k≤K

F(Xk) = max
1≤k≤K

1

S

S∑

s=1

F(Xk, Ys) (8.10)

On the other hand, the Savage criterion is associated with the use of the estimate rmax(Xk) and
allows one to choose the solution alternative X S , for which this estimate reaches a minimum:

min
1≤k≤K

rmax(Xk) = min
1≤k≤K

max
1≤s≤S

r (Xk, Ys) (8.11)

Finally, the Hurwicz criterion utilizes a linear combination of the estimates Fmin(Xk) and
Fmax(Xk) and chooses the solution alternative X H for which this combination is a maximum:

max
1≤k≤K

[αFmin(Xk) + (1 − α)Fmax(Xk)]

= max
1≤k≤K

[
α min

1≤s≤S
F(Xk, Ys) + (1 − α) max

1≤s≤S
F(Xk, Ys)

] (8.12)
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Table 8.4 Modified payoff matrix

Y1 . . . Ys . . . YS

X1 Ap(X1, Y1) . . . Ap(X1, Ys) . . . Ap(X1, YS)
. . . . . . . . . . . . . . . . . .

Xk Ap(Xk, Y1) . . . Ap(Xk, Ys) . . . Ap(Xk, YS)
. . . . . . . . . . . . . . . . . .

X K Ap(X K , Y1) . . . Ap(X K , Ys) . . . Ap(X K , YS)

where α ∈[0, 1] is the “pessimism–optimism” index whose magnitude is defined in advance
by a DM.

We will not proceed with a discussion of the main features of applying the considered
criteria (their advantages and shortcomings are discussed, for example, in Belyaev, 1977), but
instead we will try to apply them when more than one objective function is to be considered.

Before proceeding with the generalization of the classic approach to dealing with the
uncertainty component in decision-making problems, it is worth noting that some models
have addressed this problem (see, for instance, Yager, 1996; Kuchta, 2007; Wen and Iwamura,
2008), where fuzzy sets were discussed as a viable alternative yet the studies reported were
focused on monocriteria problems.

8.3 Generalization of the Classic Approach

As shown in Chapter 4, the application of the Bellman–Zadeh approach to solve multiobjective
decision-making problems provides a constructive way to derive harmonious solutions on the
basis of analyzing the associated problem of a max–min nature. Taking this into consideration,
it is possible to talk about the generalization of the classic approach on the basis of its use for
maximizing (4.28) or solving the problem expressed by (4.29) (see Ekel, Martini, and Palhares,
2008; Ekel et al., 2010). It is also evident that, when dealing with q objective functions, q
payoff matrices are to be constructed and analyzed.

Applying (4.30) to the maximized objective functions or using (4.31) on the maximized
objective functions, we can construct the modified (normalized) payoff matrix for the pth
criterion in the form shown in Table 8.4.

The availability of q modified payoff matrices allows us, by applying (4.28), to construct
the aggregated payoff matrix as given in Table 8.5.

Table 8.5 Aggregated payoff matrix with characteristic estimates

Y1 . . . Ys . . . YS Dmax(Xk) Dmin(Xk) D(Xk) rmax(Xk)
X1 D(X1, Y1) . . . D(X1, Ys) . . . D(X1, YS) Dmax(X1) Dmin(X1) D(X1) rmax(X1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xk D(Xk, Y1) . . . D(Xk, Ys) . . . D(Xk, YS) Dmax(Xk) Dmin(Xk) D(Xk) rmax(Xk)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X K D(X K , Y1) . . . D(X K , Ys) . . . D(X K , YS) Dmax(X K ) Dmin(X K ) D(X K ) rmax(X K )
Dmax(Ys) Dmax(Y1) . . . Dmax(Ys) . . . Dmax(YS)
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The characteristic estimates shown there are formed as follows:

� The membership function maximum level (optimistic estimate)

Dmax(Xk) = max
1≤s≤S

D(Xk, Ys) (8.13)

� The membership function minimum level (corresponding to the pessimistic estimate)

Dmin(Xk) = min
1≤s≤S

D(Xk, Ys) (8.14)

� The membership function average level

D(Xk) = 1

S

S∑

s=1

D(Xk, Ys) (8.15)

� The risk maximum level, which is defined as (8.4) with r (Xi , Ys) = Dmax(Ys) − µD(Xi , Ys)
where Dmax(Ys) = max1≤k≤K D(Xk, Ys).

In this case, it is possible to construct the aggregated risk matrix (similar to the risk matrix
given in Table 8.3) as well. We observe that if the risk matrices constructed for each objective
function reflect the particular risks (monocriteria risk estimates), the aggregated risk matrix
reflects the aggregated risks (multicriteria risk) encountered in decision-making.

8.4 Modification of the Choice Criteria

The characteristic estimates Dmax(Xk), Dmin(Xk), D(Xk), and rmax(Xk) considered above can
serve as the basis for the choice criteria which are to be used under the generalization of the
classic approach (Ekel, Martini, and Palhares, 2008; Ekel et al., 2010).

In particular, the modified Wald criterion assumes the following form:

max
1≤k≤K

D(Xk) = max
1≤k≤K

min
1≤s≤S

min
1≤p≤q

Ap(Xk, Ys) (8.16)

The Laplace criterion can be expressed as follows:

max
1≤k≤K

D(Xi ) = max
1≤k≤K

1

S

S∑

s=1

min
1≤p≤q

Ap(Xk, Ys) (8.17)

The Savage criterion comes in the following form:

min
1≤k≤K

rmax(Xk) = min
1≤k≤K

max
1≤s≤S

[
max

1≤k≤K
min

1≤p≤q
Ap(Xk, Ys) − min

1≤p≤q
Ap(Xk, Ys)

]
(8.18)
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Finally, the Hurwicz criterion takes on the following form:

max
1≤k≤K

[
α min

1≤k≤K
D(Xk) + (1 − α) max

1≤k≤K
D(Xk)

]

= max
1≤k≤K

[
α min

1≤k≤K
min

1≤p≤q
D(Xk, Ys) + (1 − α) max

1≤k≤K
min

1≤p≤q
D(Xk, Ys)

] (8.19)

Although the generalization of the classic approach (Luce and Raiffa, 1957; Raiffa, 1968;
Webster, 2003) to consider uncertainty of information in multicriteria decision-making is
concerned here with the modification of the criteria of Wald, Laplace, Savage, and Hurwicz,
the same line of thought can be extended to other types of choice criteria available in the
literature, for example, the criteria of Hodges and Lehmann, Bayes, maximal probability,
and so on (Hodges and Lehmann, 1952; Trukhaev, 1981). However, the use of these criteria
presumes the availability of a certain type of information (usually in a probabilistic format)
about the states of nature.

8.5 General Scheme of Multicriteria Decision-Making
under Uncertainty

Following our brief presentation above, we can introduce a general scheme of multicriteria
decision-making under uncertainty. The scheme comprises three main phases.

First, we construct q payoff matrices (completed according to the number of objective
functions under consideration) for all combinations of the given solution alternatives Xk ,
k = 1, 2, . . . , K , and the given representative states of nature Ys , s = 1, 2, . . . , S. We do not
consider in detail the techniques that can be used to select representative states of nature
(scenarios); those are represented and discussed, for example, in Belyaev (1977) and Meristo
(1989). Here the use of so-called LPτ -sequences (Sobol’, 1979; Sobol’ and Statnikov, 2006)
can be beneficial in generating the representative states of nature as well. These sequences are
used in Example 8.1. To construct the payoff matrices, it is necessary to solve S multiobjective
problems formalized within the framework of the 〈X, M〉 models as discussed in Chapter 4.
Their resulting solutions produce the solution alternatives Xk , k = 1, 2, . . . , K ≤ S (naturally,
some solutions can be added by a DM and all solution alternatives can be defined by a
DM). Hereafter the solution alternatives Xk , k = 1, 2, . . . , K , are substituted into Fp(X ),
p = 1, 2, . . . , q, for Ys , s = 1, 2, . . . , S. These substitutions generate q payoff matrices.

The second phase of the scheme is associated with the analysis of the obtained payoff
matrices. This phase is based on the use of the generalization of the classic approach to dealing
with uncertainty of information in multicriteria decision problems. It might happen, however,
that the solution obtained in this way is not unique. In this case we have to proceed with further
processing (which forms the third phase of the scheme). Nevertheless, it is important to note
here that the second stage helps us to evaluate the particular risks (in the case of monocriteria
risk estimates) as well as the aggregated risks (multicriteria risk estimates) in decision-making
for any particular solution alternative.

The third phase is associated with the construction and analysis of the 〈X, R〉 models for the
subsequent contraction of the decision uncertainty regions (the construction and analysis of
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such models were covered in Chapter 7; the results related to group decision-making presented
in Chapter 9 are applicable here as well). The use of the 〈X, R〉 models allows us to take into
consideration quantitative as well as qualitative indices, whose formation is based on the
knowledge, experience, and intuition of experts.

In this way, the application of the general scheme of multicriteria decision-making under
uncertainty is crucial for utilizing information of a formal nature (quantitative information)
to the greatest extent and only then does one exploit qualitative information to reduce the
corresponding decision uncertainty regions.

8.6 Application Example

The example presented below demonstrates the ways of realizing the two first phases of
the general scheme of multicriteria decision-making under uncertainty. The third phase is
not considered as Chapter 7 included detailed and convincing examples of applying the
〈X, R〉 models.

Example 8.1. Let us consider the following multiobjective problem with interval coefficients
present in the objective functions:

F1(x) = [2.70, 3.30]x1 + [11.70, 14.30]x2 + [7.20, 8.80]x3 → min (8.20)

F2(x) = [5.40, 6.60]x1 + [3.60, 4.40]x2 + [4.50, 5.50]x3 → min (8.21)

subject to the following constraints:

0 ≤ x1 ≤ 10 (8.22)

0 ≤ x2 ≤ 12 (8.23)

0 ≤ x3 ≤ 14 (8.24)

x1 + x2 + x3 = 36 (8.25)

The first phase in the decision-making process is concerned with the construction of two
payoff matrices for all combinations of the solution alternatives Xk , k = 1, 2, . . . , K , and
the representative states of nature Ys , s = 1, 2, . . . , S. Without going into detail on how the
LPτ -sequences (which have superior characteristics of uniformity among other uniformly
distributed sequences, Sobol’, 1979) are constructed, we will apply them to generate the
representative states of nature.

The results of Sobol’ (1979) allow us to determine points Qs , s = 1, 2, . . . , S, with co-
ordinates qst, t = 1, 2, . . . , T , in the corresponding unit hypercube QT . In particular, taking
into account that here T = 6 (we have six coefficients in (8.20) and (8.21)) and setting S = 7,
Table 8.6 includes coordinates of points Qs , s = 1, 2, . . . , 7, for t = 1, 2, . . . , 6 determined
on the basis of recommendations of Sobol’ (1979) and Sobol’ and Statnikov (2006).

In essence, the selection of representative states of nature is reduced to the formation
of points of a uniformly distributed sequence in Q6 and their transformation to the hyper-
cube C6 defined by the lower c′

t and upper c′′
t bounds of the corresponding coefficients of

(8.20) and (8.21). Taking this into account, if points Qs , s = 1, 2, . . . , 7, with coordinates qst,
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Table 8.6 Points of the LPτ -sequences in Q6

s t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

1 0.500 0.500 0.500 0.500 0.500 0.500
2 0.250 0.750 0.250 0.750 0.250 0.750
3 0.750 0.250 0.750 0.250 0.750 0.250
4 0.125 0.625 0.875 0.875 0.625 0.125
5 0.625 0.125 0.375 0.375 0.125 0.625
6 0.375 0.375 0.625 0.125 0.875 0.875
7 0.875 0.875 0.125 0.625 0.375 0.375

t = 1, 2, . . . , 6, form a uniformly distributed sequence in Q6, then points Cs, s = 1, 2, . . . , 7,
with the coordinates expressed as

cst = c′
t + (c′′

t − c′
t )qst, t = 1, 2, . . . , 6 (8.26)

form a uniformly distributed sequence in C6 which is included in Table 8.7.
The coordinates of points in Table 8.7 serve as a basis for constructing seven (in accordance

with the number of states of nature) multiobjective optimization problems with deterministic
coefficients

F1(x) = 3.00x1 + 13.00x2 + 8.00x3 → min (8.27)

F2(x) = 6.00x1 + 4.00x2 + 5.00x3 → min (8.28)

F1(x) = 2.85x1 + 13.65x2 + 7.60x3 → min (8.29)

F2(x) = 6.30x1 + 3.80x2 + 5.25x3 → min (8.30)

F1(x) = 3.15x1 + 12.35x2 + 8.40x3 → min (8.31)

F2(x) = 5.70x1 + 4.20x2 + 4.75x3 → min (8.32)

F1(x) = 2.93x1 + 12.68x2 + 8.20x3 → min (8.33)

F2(x) = 5.55x1 + 4.30x2 + 5.38x3 → min (8.34)

F1(x) = 2.78x1 + 13.33x2 + 8.60x3 → min (8.35)

F2(x) = 6.45x1 + 4.10x2 + 4.63x3 → min (8.36)

F1(x) = 3.08x1 + 12.03x2 + 7.80x3 → min (8.37)

Table 8.7 Representative states of nature

s t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

1 3.00 13.00 8.00 6.00 4.00 5.00
2 2.85 13.65 7.60 6.30 3.80 5.25
3 3.15 12.35 8.40 5.70 4.20 4.75
4 2.93 12.68 8.20 5.55 4.30 5.38
5 2.78 13.33 8.60 6.45 4.10 4.63
6 3.08 12.03 7.80 5.85 3.70 5.13
7 3.23 13.98 7.40 6.15 3.90 4.88
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F2(x) = 5.85x1 + 3.70x2 + 5.13x3 → min (8.38)

F1(x) = 3.23x1 + 13.98x2 + 7.40x3 → min (8.39)

F2(x) = 6.15x1 + 3.90x2 + 4.88x3 → min (8.40)

which are subject to the same constraints (8.22)–(8.25).
The solutions to the above multiobjective problems, obtained with the use of the AIDMS1

described in Chapter 4, are as follows:

s = 1: x0
1 = 7.00, x0

2 = 9.00, x0
3 = 14.00 for (8.27) and (8.28)

s = 2: x0
1 = 8.95, x0

2 = 10.50, x0
3 = 10.55 for (8.29) and (8.30)

s = 3: x0
1 = 7.00, x0

2 = 9.00, x0
3 = 14.00 for (8.31) and (8.32)

s = 4: x0
1 = 9.95, x0

2 = 10.50, x0
3 = 9.55 for (8.33) and (8.34)

s = 5: x0
1 = 7.00, x0

2 = 9.00, x0
3 = 14.00 for (8.35) and (8.36)

s = 6: x0
1 = 9.93, x0

2 = 11.35, x0
3 = 8.72 for (8.37) and (8.38)

s = 7: x0
1 = 7.00, x0

2 = 9.00, x0
3 = 14.00 for (8.39) and (8.40)

In such a way, we can form the following four solution alternatives for the problem
(8.20)–(8.25):

X1 = (7.00, 9.00, 14.00)

X2 = (8.95, 10.50, 10.55)

X3 = (9.95, 10.50, 9.55)

X4 = (9.93, 11.35, 8.72)

Substituting these solutions into (8.27), (8.29), (8.31), (8.33), (8.35), (8.37), and (8.39), we
construct a payoff matrix for the first objective function (Table 8.8). When substituting them
into (8.28), (8.30), (8.32), (8.34), (8.36), (8.38), and (8.40), we construct a payoff matrix for
the second objective function (Table 8.9).

Let us consider the solution of the single-criterion problem (8.20) subject to the constraints
(8.22)–(8.25) when analyzing the payoff matrix given in Table 8.8.

First of all, we construct the payoff matrix with the characteristic estimates represented in
Table 8.10. In particular, this table includes the estimates Fmax(Xk), Fmin(Xk), and F(Xk)

Table 8.8 Payoff matrix for the first criterion

Y1 Y2 Y3 Y4 Y5 Y6 Y7

X1 250.00 249.20 250.80 249.43 259.83 239.03 252.03
X2 243.75 249.01 246.49 245.87 255.58 236.17 253.77
X3 242.75 244.26 241.24 240.60 249.76 231.45 249.60
X4 247.10 249.50 244.70 244.52 253.89 235.14 255.27
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Table 8.9 Payoff matrix for the second criterion

Y1 Y2 Y3 Y4 Y5 Y6 Y7

X1 148.00 151.80 144.20 152.87 146.87 146.07 146.47
X2 148.45 151.67 145.23 151.58 149.62 145.33 147.48
X3 149.45 152.72 146.18 151.75 151.44 146.05 148.75
X4 148.58 151.47 145.69 150.83 150.96 144.82 147.89

defined on the basis of (8.1)–(8.3). We note that the last line in Table 8.10 is Fmin(Ys) because
the first criterion is to be minimized. Its elements are defined by the relationship described by
(8.6). Further, the elements of the risk matrix (Table 8.11) have been calculated on the basis of
(8.8). The estimates rmax(Xk), given in Tables 8.10 and 8.11, have been obtained by making
use of (8.4).

Taking into account that the first objective function is to be minimized, the Wald criterion
(8.9) using which we choose the solution alternative X W , assumes the following form:

min
1≤k≤K

Fmin(Xk) = min
1≤k≤K

max
1≤s≤S

F(Xk, Ys) (8.41)

Thus X W = {X3}. The Laplace criterion (8.10), which leads to the formation of X L , reads

min
1≤k≤K

F(Xk) = min
1≤k≤K

1

S

S∑

s=1

F(Xk, Ys) (8.42)

and yieldsX L = {X3}. The Savage criterion (8.11) returns here X S = {X3}. Finally, the Hur-
wicz criterion (8.12) is modified as follows:

min
1≤k≤K

[αFmax(Xk) + (1 − α)Fmin(Xk)]

= min
1≤k≤K

[
α max

1≤s≤S
F(Xk, Ys) + (1 − α) min

1≤s≤S
F(Xk, Ys)

] (8.43)

The use of (8.43) with α = 0.75 (as recommended in Belyaev, 1977) generates X H = {X3}
as well.

Table 8.10 Payoff matrix with characteristic estimates for the first criterion

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Fmax(Xk) Fmin(Xk) F(Xk) rmax(Xk)

X1 250.00 249.20 250.80 249.43 259.83 239.03 252.03 259.83 239.03 250.05 10.07
X2 243.75 249.01 246.49 245.87 255.58 236.17 253.77 255.58 236.17 247.81 5.82
X3 242.75 244.26 241.24 240.60 249.76 231.45 249.60 249.76 231.45 242.81 0
X4 247.10 249.50 244.70 244.52 253.89 235.14 255.27 255.27 235.14 247.16 5.67
Fmin(Ys ) 242.75 244.26 241.24 240.60 249.76 231.45 249.60
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Table 8.11 Risk matrix for the first criterion

Y1 Y2 Y3 Y4 Y5 Y6 Y7 rmax(Xk)

X1 7.25 4.94 9.56 8.83 10.07 7.58 2.43 10.07
X2 5.00 4.75 5.25 5.27 5.82 4.72 4.17 5.82
X3 0 0 0 0 0 0 0 0
X4 4.35 5.24 3.46 3.92 4.13 3.69 5.67 5.67

In such a way, as the solution to the single-criterion problem (8.20) with the constraints
(8.22)–(8.25), alternativeX3 is considered with a high degree of confidence.

Let us consider the solution of the single-criterion problem (8.21) subject to the constraints
(8.22)–(8.25) by analyzing the payoff matrix given in Table 8.9.

The corresponding payoff matrix with characteristic estimates for the second criterion
is presented in Table 8.12. The risk matrix, constructed by applying (8.8), is presented in
Table 8.13.

The use of the Wald criterion, applied on the basis of (8.41), leads to X W = {X4}. The
Laplace criterion, applied as given by (8.42), produces the selection X L = {X1}. The Savage
criterion (8.11) results in X S = {X1}. Finally, the Hurwicz criterion, based on the use of (8.43)
with α = 0.75, generates X H = {X4}.

In such a way, as the solution to the single-criterion problem (8.21) with the constraints
(8.22)–(8.25), the alternatives X1 and X4 are to be considered. Formally, these alternatives
cannot be distinguished.

Let us return to the problem described by (8.20)–(8.25).
Taking into account that max1≤k≤4 Fmax(Xk) = 259.87 and min1≤k≤4 Fmin(Xk) = 231.45

for the first objective function (see Table 8.10), and applying (4.31), we construct the mod-
ified (normalized) payoff matrix for the first criterion presented in Table 8.14. In a similar
manner, considering that max1≤k≤4 Fmax(Xk) = 152.87 and min1≤k≤4 Fmin(Xk) = 144.20 for
the second objective function (see Table 8.12), and applying (4.32), we construct the modified
(normalized) payoff matrix for the second criterion, which is presented in Table 8.15.

The two modified payoff matrices result in the construction of the aggregated payoff matrix
presented in Table 8.16; it has been generated with the use of (4.28). Table 8.16 also includes the
characteristic estimates Dmax(Xk), Dmin(Xk), and D(Xk), defined on the basis of (8.13)–(8.15),
as well as the estimates Dmax(Ys). The last ones serve for the construction of the risk matrix
shown in Table 8.17. This matrix has been used to obtain the estimates rmax(Xk) presented in
Table 8.16 and Table 8.17.

Table 8.12 Payoff matrix with characteristic estimates for the second criterion

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Fmax(Xk) Fmin(Xk) F(Xk) rmax(Xk)

X1 148.00 151.80 144.20 152.87 146.87 146.07 146.47 152.87 144.20 148.04 2.04
X2 148.45 151.67 145.23 151.58 149.62 145.33 147.48 151.67 145.23 148.48 2.75
X3 149.45 152.72 146.18 151.75 151.44 146.05 148.75 152.72 146.05 149.48 4.57
X4 148.58 151.47 145.69 150.83 150.96 144.82 147.89 151.47 144.82 148.61 4.09
Fmin(Ys ) 148.00 151.80 144.20 152.87 146.87 146.07 146.47
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Table 8.13 Risk matrix for the first criterion

Y1 Y2 Y3 Y4 Y5 Y6 Y7 rmax(Xk)

X1 0 0.33 0 2.04 0 1.25 0 2.04
X2 0.45 0.20 0.93 0.75 2.75 0.51 1.01 2.75
X3 1.45 1.25 1.98 0.92 4.57 1.23 2.28 4.57
X4 0.58 0 1.49 0 4.09 0 1.42 4.09

Table 8.14 Modified payoff matrix for the first criterion

Y1 Y2 Y3 Y4 Y5 Y6 Y7

X1 0.35 0.37 0.32 0.37 0 0.73 0.27
X2 0.57 0.38 0.47 0.49 0.15 0.83 0.21
X3 0.60 0.55 0.66 0.68 0.35 1 0.36
X4 0.45 0.36 0.53 0.54 0.21 0.87 0.16

Table 8.15 Modified payoff matrix for the second criterion

Y1 Y2 Y3 Y4 Y5 Y6 Y7

X1 0.56 0.12 1 0 0.69 0.78 0.74
X2 0.51 0.14 0.88 0.15 0.37 0.87 0.62
X3 0.39 0.02 0.77 0.13 0.16 0.79 0.48
X4 0.49 0.16 0.83 0.24 0.22 0.93 0.57

Table 8.16 Aggregated payoff matrix with characteristic estimates

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Dmax(Xk) Dmin(Xk) D(Xk) Rmax(Xk)

X1 0.35 0.12 0.32 0 0 0.73 0.27 0.73 0 0.26 0.34
X2 0.51 0.14 0.47 0.15 0.15 0.83 0.21 0.83 0.14 0.34 0.19
X3 0.39 0.02 0.66 0.13 0.16 0.79 0.36 0.79 0.02 0.36 0.14
X4 0.45 0.16 0.53 0.24 0.21 0.87 0.16 0.87 0.16 0.37 0.20
Dmax(Ys) 0.51 0.16 0.66 0.24 0.21 0.87 0.36

Table 8.17 Aggregated risk matrix

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Rmax(Xk)

X1 0.16 0.04 0.34 0.24 0.21 0.14 0.09 0.34
X2 0.00 0.02 0.19 0.09 0.06 0.04 0.15 0.19
X3 0.12 0.14 0 0.11 0.05 0.08 0 0.14
X4 0.06 0.00 0.13 0 0 0 0.20 0.20
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It is not difficult to work out that the use of the modified Wald criterion (8.16) leads to
X W = {X4}. The application of the modified Laplace criterion (8.17) shows that X L = {X4}
as well. The use of the modified Savage criterion produces X S = {X3}. Finally, the application
of the modified Hurwicz criterion, based on (8.19) with α = 0.75, generates X H = {X4}.

It is evident that the obtained results require the application of the third phase of the general
scheme by considering the solution alternatives X3 and X4 realized on the basis of constructing
and analyzing the corresponding 〈X, R〉 model.

8.7 Conclusions

We have discussed the general scheme of multicriteria decision-making under uncertainty of
information. This scheme is based on constructing and analyzing 〈X, M〉 as well as 〈X, R〉
models and also on the generalization of the classic approach to dealing with uncertainty
of information in monocriteria decision-making for multicriteria problems. The aspects of
constructing aggregated payoff matrices and modifying the choice criteria of the classic
approach have been considered.

The remarkable feature of the general scheme is associated with the fact that it is directed
at using the available quantitative information to the greatest extent to reduce the decision
uncertainty regions. If the resolving capacity of the processing of the available quantita-
tive information does not allow unique solutions to be obtained, the scheme presumes the
application of qualitative information based on the knowledge, experience, and intuition of
the involved experts. Further, the application of the general scheme permits the evaluation
of not only particular (monocriteria) but also aggregated (multicriteria) risks (regrets) in
decision-making.

Exercises

Problem 8.1. Apply the classic approach to dealing with uncertainty of information to analyze
the payoff matrix given in Table 8.18. The objective function is to be minimized.

Problem 8.2. Apply the classic approach to considering the uncertainty of information to
analyze the payoff matrix given in Table 8.19. Here the objective function is to be maximized.

Problem 8.3. Apply the generalization of the classic approach to considering the uncertainty
of information to analyze the multicriteria problem reflected by the payoff matrix (Table 8.18)

Table 8.18 Payoff matrix

Y1 Y2 Y3 Y4

X1 10 11 12 11
X2 8 14 11 13
X3 9 11 12 13
X4 12 13 12 13
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Table 8.19 Payoff matrix

Y1 Y2 Y3 Y4

X1 90 119 96 110
X2 100 110 98 112
X3 110 95 110 120
X4 110 125 112 100

for the minimized objective function and by the payoff matrix (Table 8.19) for the maximized
objective function.

Problem 8.4. Verify the possibility of changing the solution (alternatives X3 and X4) of the
problem defined by Example 8.1, in the case of increasing the importance of the first objective
function by two times.

Problem 8.5. Demonstrate the possibility of changing the solution (alternatives X3 and X4) of
the problem discussed in Example 8.1, in the case of decreasing the importance of the second
objective function by two times.
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9
Group Decision-Making:
Fuzzy Models

This chapter is concerned with discrete multiattribute decision-making problems, in a group
environment. One possible approach for solving this class of problems is to consider some
aggregation procedures as the exclusive arbitration scheme to arrive at a collective decision.
This type of approach can be considered to be dictatorial, as it does not require a consensus
to be achieved within the group members. The chapter presents three strategies, based on
different aggregation procedures, which can be utilized for extending multiattribute decision
methods, related to the analysis of 〈X, R〉 models, to group settings. Among the main dif-
ferences between these strategies, we can highlight the following: (1) the time at which the
aggregation of the opinions becomes realized; (2) the way the experts are considered in the
decision process (being treated as mutually dependent or independent individuals); and (3)
the character of numerical values being aggregated, say fuzzy estimates, fuzzy preference
relations, and fuzzy nondominance degrees. We include some examples to illustrate how these
strategies are utilized to solve group decision problems by means of different multiattribute
decision methods.

9.1 Group Decision-Making Problem and its Characteristics

The group decision problem involves the following main elements:

� The set of alternatives X = {X1, X2, . . . , Xn}, which is finite, discrete, and contains two or
more alternatives.

� The set of criteria F = {F1, F2, . . . , Fq}, with two or more criteria of a quantitative or
qualitative nature.

� The team of experts involved in the decision process E = {E1, E2, . . . , Ev}, which contains
two or more qualified professionals.

Fuzzy Multicriteria Decision-Making: Models, Methods and Applications          Witold Pedrycz, Petr Ekel and Roberta Parreiras
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The group decision environment can have different characteristics concerning attributes such
as the spatial and temporal distances among experts; the structure of the decision process; the
commonality of goals; and the level of mutual cooperation within the group (Bui and Jarke,
1986; Matsatsinis and Samaras, 2001). Next, we briefly analyze these attributes, except for
the last one, which is left for discussion in Section 9.2.

With respect to the spatial and temporal distances, the group members can be located
nearby or positioned quite distantly, which means that they can be in different places and
working at different points in time. Several organizations have implemented conferencing sys-
tems by means of replacing face-to-face meetings among geographically distributed groups,
being motivated by both time and money savings. The communication media habitually
utilized in group decision-making include face-to-face meetings, teleconferencing, video-
conferencing, instant messages (chat), and electronic mail, ranked in accordance with their
respective synchronization degree (that is, the degree of temporal distance each medium per-
mits among group members), from the most to the least synchronous media (Baltes et al.,
2002). However, it should be stressed that some negative phenomena, which may occur in
a group environment, such as miscommunication between members, lack of involvement,
insufficient time spent in the analysis, and group polarization, may be strengthened by the
distance factor. In spite of the logistic and economic appeal of using electronic communi-
cations instead of face-to-face meetings, several works conclude that, when we take into
account group satisfaction and time spent in analyzing a problem, face-to-face meetings re-
main the most fruitful medium for group decision-making (Baltes et al., 2002; Thompson and
Coovert, 2002).

Concerning the structure of the process, as indicated in Bui and Jarke (1986) it can be
hierarchical, in the sense that more power can be delegated to a group leader, or, in contrast,
it can be democratic, when authority is equally distributed among all members. Whereas in
the latter case all members are supposed to influence the decision directly and actively, in an
extreme case of the hierarchical structure, the leader can make the decision on his/her own,
with just some assistance from other members.

With regard to the commonality of goals, the group can work in a cooperative or non-
cooperative fashion. As Ng and Abramson (1990) point out, cooperative work is more fre-
quent in medical as well as scientific and engineering areas, where experts are regularly
invited to pool their knowledge with the intention of finding a better solution than any of
them could obtain without help. In contrast, this tends to be less common in political and
economical fields.

In cooperative decision-making, all experts are supposed to work together toward the same
goals, in order to achieve a common decision for which they must share the responsibility.
Hence, the experts do not play the role of disputants, as in noncooperative decision-making,
which, on the other hand, usually involves bargaining among members over some common
interest and requires the use of negotiation methodologies (Lu et al., 2007). However, it is
important to emphasize that, even in such a friendly environment as the one observed in
cooperative work, the occurrence of disagreements across the group is inevitable. In practice,
it has been observed that each expert often has a distinct perception of the problem and different
information at hand (some of them may even have privileged access to restricted information).
Further, although the experts are supposed to have similar fundamental goals, they may just
partially share all the aspirations of the other members. Therefore, even under the conditions
of cooperative work, achieving a perfect consensus among group members on a final solution
is almost an impossible ideal.
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9.2 Strategies for the Analysis of Group Decision-Making Problems:
Multiperson and Multiattribute Aggregation Modes

The current literature contains several strategies for extending multiattribute decision methods
to group settings, in order to obtain solutions that reflect the collective vision of a problem.
Here, we concentrate on the group decision methods designed for working specifically in
a cooperative environment, without distinguishing whether or not the group is spatially and
temporarily distributed, as well as whether or not the structure of the process is democratic
or hierarchical. Next, we present three different strategies and utilize them to enhance the
multiattribute decision-making methods based on 〈X, R〉 models for dealing with the input of
multiple experts (Ekel et al., 2009):

� Aggregation of individual evaluations (AIE). As represented in Figure 9.1, the experts are
supposed to evaluate each alternative by forming fuzzy or linguistic estimates. Afterward, the
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Figure 9.1 Aggregation of individual evaluations.
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Figure 9.2 Aggregation of individual preferences per criterion.

estimates provided by each expert for each alternative, and taking into account each criterion,
are aggregated into some collective estimates. Having at hand an evaluation matrix of the
alternatives, it is possible to construct fuzzy preference relations per criterion and, then,
different methods for multiattribute analysis, such as those described in Chapter 7, can
be utilized.

� Aggregation of preferences per criterion (AIC). As can be seen in Figure 9.2, the experts
can provide their preferences for each criterion, using any preference format considered in
Chapter 6. After the information is made uniform, being converted into fuzzy preference
relations, the resulting matrices, obtained for each expert, are aggregated into a collective
fuzzy preference relation per criterion. Having at hand a collective fuzzy preference relation
for each criterion, it is possible to apply a multiattribute method based on 〈X, R〉 models to
analyze the problem and obtain a ranking of the alternatives.

� Aggregation of individual results (AIR). The multiattribute decision-making problem is
solved by each member of the group and, then, the individual results are combined into
a collective result, as illustrated in Figure 9.3. When AIR is used, a priori, each DM is
allowed to select a different multiattribute decision-making method to solve the problem.
However, as each method has its own fundaments and underlying principles for addressing
the problem, it is expected that each of them may produce different results for the same
problem and the same input of preferences. In this context, the use of different methods may
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increase the dissimilarities among results and, consequently, can make it harder to construct
satisfactory results of aggregation.

By comparing the three strategies, their main differences are associated with: the different
points along the process of the multicriteria analysis in which the aggregation of the opinions of
the multiple experts is realized; the character of numerical values being aggregated: fuzzy sets,
fuzzy preference relations, or fuzzy nondominance degrees; the way the group members are
handled, as a synergetic unique individual or a collection of individuals. Table 9.1 summarizes
the main differences among the three strategies, taking into account these three aspects.

Table 9.1 Summary of the main differences among AIE, AIC, and AIR

Moment of aggregation Aggregated units Group management

AIE Subsequent to the input of the opinions of
all experts

Fuzzy sets Unique individual

AIC Subsequent to the transformation of the
opinions or preferences provided by all
experts to fuzzy preference relations

Fuzzy preference
relations

Unique individual

AIR After the problem has been solved by each
expert

Fuzzy nondominance
degrees

Collection of individuals
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Two fundamental aspects should be analyzed in the selection of a suitable strategy for
a specific application. The first one concerns the observed fact that each expert frequently
prefers a different format to express their opinions. No DM should be pressed to use a specific
preference structure against his/her will; otherwise, the input of preference information can
become a very critical step in the group decision analysis. Due to the difficulty in assessing
preference levels or of understanding the particularities of a preference format, a DM may
provide data that do not correspond to the true state of affairs, which, obviously, reduces the
soundness of results.

Does any expert want to use a different preference structure to analyze each criterion? Do
any of them disagree on using fuzzy or linguistic estimates to evaluate each alternative? An
affirmative answer to any one of these questions suggests discarding AIE as an admissible
strategy, but does not provide enough reasons or incentives to decide between AIC and AIR.

The second aspect can be briefly summarized as the following question: can the group be
considered as a synergistic unit or can it be managed as a collection of independent individuals
(Forman and Peniwati, 1998)? In practice, if it can be assumed that each member has perfect
knowledge of the problem, it may be interesting to allow each member to completely solve the
problem using AIR. But if each member has only partial knowledge of the problem, it is more
reasonable to manage the group as a unique individual, using AIE or AIC. Particularly, when
the decision-making is performed on the basis of the analysis of 〈X, R〉 models, AIC may be
the most natural choice when a different expert (or a different set of experts) is supposed to
analyze each criterion.

Having defined which strategy is to be utilized, there are two other interrelated aspects that
still need to be analyzed. One aspect corresponds to the selection of an adequate operator
to combine the individual opinions, judgments, or results into collective ones. As will be
discussed in Section 9.4, this aspect depends on the strategy selected to be implemented, as
well as on the correspondence between the group requirements and the mathematical properties
of each aggregation operator. Finally, the other aspect to be considered can be briefly stated as
follows: the relative importance of the opinion provided by each DM may be assumed to be
equal or not. If the opinions of each expert are not equally important, how can their respective
importance factors be specified? This question will be discussed in Section 9.3.

9.3 The Different Levels of Influence of Each Expert in the
Construction of the Collective Opinion

In the context of group decision-making, sometimes it is relevant to differentiate the level
of influence of each expert in determining the collective opinion, in an attempt to correlate
influence with expertise. The most common way to implement levels of influence is by
considering weighted aggregation operators, which admit as input parameter a weighting
vector. In this way, a weight wy is specified for the yth member of the group and then it is
associated with the information provided by the corresponding DM, by means of the weighted
aggregation operator. The larger the weight assigned to an expert, the greater his/her influence
on the final result. However, when specifying unequal weights, it is important to be aware that
inappropriate assignments may produce biased results.

It is possible to distinguish three sources of knowledge to determine the values of such
unequal weights:
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� Each expert, who is supposed to specify a weight wy representing their self-confidence.
Afterward, these weights are usually normalized in such a way that

∑v
y=1 wy = 1, before

being used (Ng, 1992).
� The manager, who assigns a weight to each expert. In this specific case, the influence

level of each expert has been frequently evaluated and quantified with the use of AHP
(which was outlined in Chapter 3). In the analysis for determining the importance weight of
each DM, Saaty (1980) suggests considering factors such as expertise, experience, previous
performance, and persuasive abilities. Particularly, when strategy AIC is being used, a
criterion that can be utilized by the manager to set these weights is the level of consistency
within the judgments of each expert. As will be discussed in the next section, it may be
useful to reduce the weights of those experts who give inconsistent judgments, in order to
improve the consistency of the aggregated fuzzy preference relation.

� Mathematical models. Among the available models for estimating the weight of each expert,
it is worth mentioning those based on fuzzy indices which reflect the concordance level
between two opinions. For instance, in several studies (Hsu and Chen, 1996; Lu, Lan,
and Wang, 2006; Bernandes et al. 2008; Bernandes, Ekel, and Parreiras, 2009) the experts
express their opinions using fuzzy estimates and the importance weight of each opinion is
calculated taking into account two factors: the importance weight of each expert (which can
be provided by the manager as described above) and, predominantly, the mean concordance
level among each expert and the others. Lowest weights are assigned to the opinions of the
most discordant experts.

Another type of mathematical model that can be utilized to determine the weight of each
expert corresponds to the maximization of an index that reflects the consensus level among
all experts. For instance, in Ben-Arieh and Chen (2006), the scalar weights associated to each
individual result are derived from a mathematical model, in order to increase the measure of
consensus until a certain minimum level. We leave this type of procedure, whose main focus
is to search for a satisfactory level of consensus across the group, until Chapter 10.

9.4 Aggregation Operators for Constructing Collective Opinions
on the Basis of Fuzzy Models and their Properties

As we know, in the process of group decision-making, at some point there is a need to aggregate
some numerical values in order to make it possible to construct a meaningful solution for the
group. Depending on the selected strategy, AIE, AIC, or AIR, these numerical values are
associated with fuzzy estimates, fuzzy preference relations, or the cardinal rating of each
alternative, reflected by their respective fuzzy nondominance levels. Obviously each strategy
involves peculiarities that must be considered in the choice of an aggregation operator.

The literature contains several aggregation operators which can be applied to group decision-
making, with the aim of summarizing different points of view in a unique opinion. Particularly,
when AIC and AIR are considered, more than one aggregation operator has been tradition-
ally utilized. Considering that each aggregation operator reflects individual information in
a different manner, it is assumed as part of the group decision problem that some imposed
requirements are to be satisfied by the aggregation operator, in order to guarantee reasonable
results. Next, we analyze the properties of some common aggregation operators in the context
of each strategy.
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First, let us consider the AIE strategy, which requires each DM to express their opinion
using fuzzy or linguistic estimates. Given a particular alternative Xk ∈ X, all evaluations for
a specific criterion Fp are represented as fuzzy sets F y

p (Xk), y = 1, 2, . . . , v, in the same
universe of discourse, but possibly having different membership functions. The collective
opinion FC

p (Xk) is commonly obtained by applying the weighted arithmetic mean to combine
the estimates provided by each expert F y

p (Xk), y = 1, 2, . . . , v, into a collective estimate
as follows:

FC
p (Xk) =

v∑

y=1

wy F y
p (Xk) (9.1)

where Xk ∈ X, 0 ≤ wy ≤ 1, for y = 1, 2, . . . , v,
∑v

y=1 wy = 1. In expression (9.1), the sum
and the multiplication are implemented in accordance with the addition operation (refer to
expression (3.42)) and the multiplication operation (refer to expression (3.44)) described in
Chapter 3, with each scalar weight wy represented as a fuzzy singleton.

Example 9.1. Consider that three experts, E1, E2, and E3, evaluated an alternative X1 from
the point of view of the same criterion using the following trapezoidal fuzzy estimates:
F1(X1) = {2.1, 2.2, 2.7, 2.8}, F2(X1) = {1, 1.2, 1.4, 1.6}, F3(X1) = {2, 3, 3.5, 4}. If all ex-
perts are supposed to have the same level of influence on the results, their corresponding
weights can be set as: w1 = w2 = w3 = 0.33. In this way, the collective estimate, obtained
using (9.1), is given by

FC (X1)={0.33, 0.33, 0.33, 0.33}.{2.1, 2.2, 2.7, 2.8}
+{0.33, 0.33, 0.33, 0.33}.{1, 1.2, 1.4, 1.6}
+ {0.33, 0.33, 0.33, 0.33}.{2, 3, 3.5, 4}

= {1.68, 2.11, 2.5, 2.77} (9.2)

Now, let us concentrate on AIC, which deals with the aggregation of fuzzy preference relations
rather than fuzzy estimates. However, before going any further, we want to call attention to the
fact that, in this chapter, we use a notation coherent with that utilized in Chapter 6, that is, we
use R for fuzzy preference relations in general, RR for the additive reciprocal fuzzy preference
relation (ARFPR), and NR for the nonreciprocal fuzzy preference relation (NRFPR). Further,
it must be apparent to the reader that we make a distinction between ARFPR and NRFPR
only in the stage of preference input of the decision-making process. Once the preferences
have been supplied, we handle both types of fuzzy preference relations as the general fuzzy
preference relation denoted by R.

In AIC, the operation to generate collective information is performed over the fuzzy pref-
erence relations per criterion (before the aggregation across all criteria has been completed).
Hence, given the pth criterion, the operation of aggregation makes use of a function that maps
a vector of fuzzy nonstrict preference relations R p = [R1

p R2
p . . . Rv

p], to another fuzzy
nonstrict preference relation RC

p . Among the operators commonly utilized in this context, we
can name the OWA operator, the weighted arithmetic mean (WAM), the weighted geometric
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mean (WGM), and the min operator. When OWA is utilized, the collective fuzzy preference
relation is given by (Herrera-Viedma, Herrera, and Chiclana, 2002)

RC
p (Xk, Xl ) =

v∑

y=1

wyby (9.3)

where (Xk, Xl ) ∈ X × X, by is the yth largest value in the collection R1
p(Xk, Xl ),

R2
p(Xk, Xl ), . . . , Rv

p(Xk, Xl ), and the weights w1, w2, . . . , wv satisfy conditions 0 ≤ wy ≤ 1,
y = 1, 2, . . . , v, and

∑v
y=1 wy = 1.

On the other hand, when WAM is utilized, we have (Peneva and Popchev, 2003)

RC
p (Xk, Xl ) =

v∑

y=1

wy Ry
p(Xk, Xl ) (9.4)

where (Xk, Xl ) ∈ X × X , 0 ≤ wy ≤ 1, y = 1, 2, . . . , v, and
∑v

y=1 wy = 1.
The use of WGM as the selected aggregation operator leads to (Peneva and Popchev, 2003)

RC
p (Xk, Xl ) =

v∏

y=1

(
Ry

p(Xk, Xl )
)wy (9.5)

where (Xk, Xl ) ∈ X × X , 0 ≤ wy ≤ 1, for y = 1, 2, . . . , v, and
∑v

y=1 wy = 1.
Finally, if min is the selected aggregation operator, the collective fuzzy preference relation

is obtained as (Peneva and Popchev, 2003)

RC
p (Xk, Xl ) = min

1≤y≤v
Ry

p(Xk, Xl) (9.6)

In AIC, the collective fuzzy preference relation RC
p is supposed to provide the possibility

of deciding by means of a multiattribute decision method among the ones based on the
Orlovsky choice function, which were described in Chapter 7. It implies that the resultant
aggregated relations RC

p , p = 1, 2, . . . , q, should satisfy at least weak transitivity (Sengupta,
1998); otherwise, unreasonable outcomes may be derived from their analysis. Thus, taking
into account that the aggregated fuzzy preference relation may inherit inconsistencies from
the individual ones, each member of the group is supposed to cooperate, providing consistent
judgments. If an expert cannot provide consistent judgments, some action can be taken in
order to reduce the negative impact of the inconsistent judgments in the construction of
collective preferences, as will be shown in the next section. But, for now, let us consider that
all experts provided consistent judgments. In this case, one aspect to be considered is: does the
selected aggregation operator have the capability to preserve the consistency of individual fuzzy
preference relations? To what extent is the consistency preserved? We note that other authors
also have observed the importance of considering the fact that, in spite of the good properties of
some aggregation operators, they may not assure consistent decisions in the framework of fuzzy
preferences (Garcı́a-Lapresta and Meneses, 2005). A very comprehensive treatment of this
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subject by Peneva and Popchev (2003) addresses the capability of several aggregation operators
to transmit the mathematical properties of individual fuzzy preference relations (reflexivity,
symmetry, transitivity, and others) to the aggregated one. However, as far as we are aware,
the current literature has not included a relevant property such as additive transitivity, or an
important aggregation operator such as OWA, in this kind of inquiry. Furthermore, at present,
the literature still lacks a consensus on an adequate consistency condition to be satisfied by
each expert, as well as by the whole group, when it is handled as a unique individual. For these
reasons, it has so far remained impossible to fairly select an aggregation operator taking this
criterion into account.

On the other hand, an important factor that should be (and can be) considered in the choice
of an operator corresponds to the set of requirements imposed by the group, when taking into
account the expectations of each expert. For instance, if the group agrees that the content of
the opinion is more important than its author, it may be more helpful to utilize the min operator
or else the OWA operator, whose weights do not depend on the source, but on the position of
each element in the rank of all individual elements. Conversely, if certain experts need to be
privileged (rather than certain opinions), then it is interesting to utilize WAM or WGM.

It also should be taken into account that, whereas OWA may have (or not) a compensatory
behavior (that is, it allows a bad evaluation given by a DM to be compensated by a good
one from another DM), depending on the fuzzy linguistic quantifier selected, WAM and
WGM always have a compensatory character (the compensatory character of WGM is weaker
than that of WAM). The min operator, however, always has a noncompensatory behavior.
Particularly, its use is helpful when the group agrees that the collective decision should be
pessimistic, in the sense that an alternative which was badly evaluated by any expert should
be badly evaluated by the group in a noncompensatory way.

Finally, another helpful property of OWA lies in the fact that it can be utilized to consider
only part of the opinions, by a proper setting of the linguistic operator. When the opinions of
experts are very discordant, if we aggregate all of them by means of an averaging operator, the
result may be an intermediate one which does not satisfy any expert in the group. On the other
hand, if we consider, for instance, “most” opinions rather than “all” opinions, this undesired
outcome can be avoided.

Example 9.2. Consider that three experts, E1, E2, and E3, compared three alternatives,
X1, X2, and X3. The provided judgments are expressed in terms of the nonreciprocal fuzzy
nonstrict preference relations

RN1 =
⎡

⎣
1 0.92 0.92
1 1 1
1 1 1

⎤

⎦ (9.7)

RN2 =
⎡

⎣
1 1 0
1 1 0
1 1 1

⎤

⎦ (9.8)

RN3 =
⎡

⎣
1 0.6 0.6
1 1 0.6
1 1 1

⎤

⎦ (9.9)
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OWA, WAM, WGM, and min are to be utilized to aggregate the fuzzy preference relations
RN1, RN2, and RN3 into collective relations. In the case of OWA, the linguistic quantifier
“most” defined, as shown in Figure 7.22, is utilized. The resulting weights are w1 = 0.066,
w2 = 0.667, w3 = 0.266. For the sake of comparison among all operators, the same weights
are also considered for WAM and WGM.

In particular, the application of OWA generates

RC =
⎡

⎣
1 0.84 0.46
1 1 0.46
1 1 1

⎤

⎦ (9.10)

The use of WAM leads to

RC =
⎡

⎣
1 0.89 0.22
1 1 0.23
1 1 1

⎤

⎦ (9.11)

By using WGM, we have

RC =
⎡

⎣
1 0.87 0
1 1 0
1 1 1

⎤

⎦ (9.12)

Finally, when the minimum operator is applied, the collective fuzzy preference relation is
the matrix

RC =
⎡

⎣
1 0.6 0
1 1 0
1 1 1

⎤

⎦ (9.13)

By observing these results, it is interesting to note that the low values of RC (X1, X3) and
RC (X2, X3) in both (9.11) and (9.12) are due to the low values observed in the positions
RN2(X1, X3) and RN2(X2, X3) of the NRFPR (9.8), which has a high importance. Further,
another interesting aspect to be noted by comparing (9.11) and (9.12) is that WGM tends to
penalize judgments with low values more than WAM does. In (9.13), we have a pessimistic
aggregated preference relation where the most severe judgments from (9.7), (9.8), and (9.9)
prevailed. On the other hand, when we used OWA (which does not fix an association between
the weights and the relations) and allowed a compensatory behavior, we obtained higher values
for RC (X1, X3) and RC (X2, X3), as in (9.10).

In AIR, regardless of the multiattribute decision method selected by each expert to solve
the problem, the individual results invariably correspond to the fuzzy nondominance degree
associated with each alternative, which can be taken as cardinal ratings of each alternative.
Again, the aggregation operators commonly utilized in this context are OWA, WAM, WGM,
and min.
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The use of OWA leads to

NDC (Xk) =
v∑

y=1

wyby (9.14)

where Xk ∈ X, the degree of fuzzy nondominance by is the yth largest value among
ND1(Xk), . . . , NDv(Xk), and the weights w1, w2, . . . , wy satisfy conditions 0 ≤ wy ≤ 1, for
y = 1, 2, . . . , v and

∑v
y=1 wy = 1.

The use of WAM leads to

NDC (Xk) =
v∑

y=1

wyNDy(Xk) (9.15)

where Xk ∈ X, 0 ≤ wy ≤ 1, for y = 1, 2, . . . , v, and
∑v

y=1 wy = 1.
The application of WGM generates

NDC (Xk) =
v∏

y=1

(NDy(Xk))wy (9.16)

where Xk ∈ X, 0 ≤ wy ≤ 1, for y = 1, 2, . . . , v, and
∑v

y=1 wy = 1.
Finally, with the application of the min operator, we have

NDC (Xk) = min
1≤y≤v

NDy(Xk) (9.17)

In AIR, the aggregation operator should be selected by considering the correspondence between
the requirements of the group and the mathematical properties of the operator. As already
indicated, OWA is the best option when it is necessary to associate each weight to the value of
each score, rather than to the author responsible for providing the score. Conversely, the use
of the averaging operators WAM and WGM may be particularly attractive because of their
intuitive appeal: certainly all experts know both WAM and WGM and have already utilized
them to aggregate some kind of scores during their lives. The choice between WAM and WGM
should consider the fact that WGM, more than WAM, tends to penalize alternatives with at
least a low score. Finally, min has a useful capability of generating pessimistic results, in the
sense that it takes as the final cardinal ratings the worst rating obtained by each alternative. In
this way, it does not allow any alternative to assume a good position in the collective ranking
if at least one expert does not agree with that position.

Example 9.3. Consider that the fuzzy nondominance levels of alternatives X1, X2, and X3 are
calculated taking into account the preferences of experts E1, E2, and E3, separately. Then, by
applying OWA, WAM, WGM, and min, four different collective results are obtained. Again,
the same weights utilized in Example 9.2 are utilized here. Table 9.2 shows the individual as
well as the collective results. As can be seen, different operators can lead to different results:
the use of WAM leads to X1 ∼ X2 � X3; the ranking provided by both min and WGM is
X2 � X1 � X3; the use of OWA yields X1 � X2 � X3. With this simple example we intend
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Table 9.2 Fuzzy nondominance levels of alternatives

E1 E2 E3 OWA WAM WGM min

X1 1 1 0.6 0.89 0.89 0.87 0.6
X2 0.8 0.9 0.9 0.87 0.89 0.89 0.8
X3 0.9 0.5 1 0.80 0.66 0.62 0.5

to call attention to the importance of selecting an aggregation operator compatible with the
requirements of the group decision problem.

9.5 Consistency of Pairwise Judgments in Group Decision-Making

When preferences are expressed in terms of pairwise comparisons, it is important to verify
whether the supplied judgments are consistent, because the occurrence of inconsistencies may
be a sign of erroneous judgments and, principally, inconsistencies may lead to incoherent
results. Indeed, as indicated in Chapter 7, the multiattribute decision-making methods based
on the Orlovsky choice function require the fuzzy preference relation to satisfy at least weak
transitivity to characterize a rational decision. Therefore, in group decision-making, we can
distinguish two distinct problems associated with the issue of consistency (Herrera-Viedma
et al., 2004):

� the problem of individual inconsistency, which refers to the fact that the preferences of each
expert, considered separately, should be consistent;

� the problem of collective inconsistency, which refers to the fact that the preferences of the
whole group of experts, considered as a unique individual, should be consistent.

When we focus on the specific problem of collective inconsistency, it is important to indicate
that it may be raised by two factors:

� A member of the group may supply an inconsistent fuzzy preference relation or an incon-
sistent multiplicative preference relation, which may cause inconsistencies in the collective
preferences.

� As already mentioned, in spite of the good properties of some aggregation operators, they do
not necessarily assure consistent aggregated fuzzy preference relations. In this way, even if
all individual preferences are considered consistent, the occurrence of different preferences
across the group may result in an inconsistent collective fuzzy preference relation.

As discussed in Chapter 5 and Chapter 6, the transitivity property has been conventionally
utilized as a condition for attesting to the consistency of the pairwise judgments provided by
an expert. However, when we concentrate on the consistency of fuzzy preference relations,
no transitivity property has been assumed to be the ideal consistency condition to be applied
in all circumstances. Among the different transitivity properties, three of them receive special
attention here: the additive transitivity, which has been applied to additive reciprocal fuzzy
preference relations (refer to expressions (6.7) or (6.33)); and the min-transitivity (refer to
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expression (5.23)) and the weak transitivity (refer to expression (5.59)), which have been
applied to both reciprocal and nonreciprocal fuzzy preference relations.

The problem of individual inconsistency may take place when AIC and AIR are in use
and at least one expert expresses his/her opinions in terms of fuzzy preference relations or
multiplicative preference relations. On the other hand, the problem of collective inconsistency
is specifically associated with AIC, which is based on the analysis of collective fuzzy preference
relations. In the execution of the AIC strategy, the transitivity property can also be used to
verify whether the collective fuzzy preference relation is within a minimally acceptable level
of consistency.

Example 9.4. Consider that three experts supplied their preferences over three alternatives,
X1, X2, and X3, in terms of the ARFPRs RR1, RR2, and RR3, which perfectly satisfy the
additive transitivity condition:

RR1 =
⎡

⎣
0.5 0.1 0
0.9 0.5 0.4
1 0.6 0.5

⎤

⎦ (9.18)

RR2 =
⎡

⎣
0.5 0.2 0.6
0.8 0.5 0.9
0.4 0.1 0.5

⎤

⎦ (9.19)

RR3 =
⎡

⎣
0.5 0.9 0.7
0.1 0.5 0.3
0.3 0.7 0.5

⎤

⎦ (9.20)

It is interesting to observe that (9.18)–(9.20) are coherent with the rankings X3 � X2 � X1,
X2 � X1 � X3, and X1 � X3 � X2, respectively. Next, we aggregate (9.18)–(9.20) using four
different operators: OWA (with the quantifier “most”), min, and the averaging operators WAM
and WGM, both with weights w1 = 0.2, w2 = 0.3, w3 = 0.5. The corresponding collective
fuzzy preference relations are given by (9.21), (9.22), (9.23), and (9.24), respectively:

RC =
⎡

⎣
0.500 0.220 0.447
0.620 0.50 0.407
0.413 0.473 0.500

⎤

⎦ (9.21)

RC =
⎡

⎣
0.5 0.1 0
0.1 0.50 0.3
0.3 0.1 0.50

⎤

⎦ (9.22)

RC =
⎡

⎣
0.50 0.53 0.53
0.47 0.50 0.50
0.47 0.50 0.50

⎤

⎦ (9.23)

RC =
⎡

⎣
0.500 0.369 0
0.289 0.500 0.442
0.416 0.378 0.500

⎤

⎦ (9.24)
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Note that, except for (9.23), the obtained fuzzy preference relations do not satisfy the reci-
procity condition, as well as the additive transitivity condition. For instance, according to the
additive transitivity property, we should have RC (X1, X2) + RC (X2, X3) + RC (X3, X1) =
3/2, but in (9.21) we obtain 0.220 + 0.407 + 0.413 = 1.04; in (9.22) we have 0.1 +
0.3 + 0.3 = 0.7; and, finally, in (9.24) we have 0.369 + 0.442 + 0.416 = 1.227. On the
other hand, it should be indicated that, in this example, except for (9.27), the other aggre-
gated fuzzy preference relations satisfy weak transitivity. For instance, in (9.24) we have that
RC (X2, X3) > RC (X3, X2) and RC (X3, X1) > RC (X1, X3). Consequently, we should have
RC (X2, X1) > RC (X1, X2). But, instead of this, we have RC (X2, X1) = 0.289 which is lower
than RC (X1, X2) = 0.369.

The current literature still lacks deep considerations of the problem of individual, as well
as of collective, inconsistency. Particularly, up to now, researchers have not agreed on a fair
consistency condition to be satisfied by the collective judgments, represented in terms of
fuzzy preference relations. One could argue: is it reasonable to impose the same consistency
condition on each individual and on the whole group? Example 9.3 confirms that, even when all
experts supply their preferences as reciprocal fuzzy preference relations satisfying the additive
transitivity property, the aggregated fuzzy preference relation may not satisfy this condition.
In this example, the additive and the min-transitivity properties seem to be excessively hard
conditions for the case of collective preferences. In this chapter, we considered that it suffices
to require the collective fuzzy preference relation to satisfy weak transitivity, which is an
acceptable level of consistency for the application of the decision methods based on the
Orlovsky choice function (Sengupta, 1998).

Considering that the current literature does not present specific procedures for improving
the consistency of collective fuzzy preference relations, it is recommended to take some
preventive actions against this problem. Obviously, first of all, it is important to minimize the
problem of individual inconsistency as much as possible. As indicated in Chapter 6, when an
expert is not capable of revising or adjusting his/her inconsistent preference relations, this task
can be delegated to an analyst. This procedure may be considered a little dictatorial, but, in
practice, it may be useful, considering that at least a minimum level of consistency should be
observed within all individual judgments in order to promote the consistency of the aggregated
judgments. Further, it is also valuable to make use of automated procedures to improve the
consistency of the individual preferences till weak transitivity, such as the one introduced in
Ma et al. (2006) (refer to Chapter 6 for its description). Alternatively, it is also possible to ask
the expert to consider using another preference format to express his/her opinions.

Nevertheless, if the aggregated preferences contain inconsistent judgments, there are still
some other possible actions to alleviate this problem, as follows (they are not listed in order
of priority):

� Verify empirically whether another admissible aggregation operator can produce more con-
sistent collective fuzzy preference relations.

� Measure the degree of inconsistency of the individual preference relations and reduce the
weight associated with the most inconsistent ones, in order to decrease their influence in the
collective fuzzy preference relation. Obviously, this action should be pondered before being
made, as it involves neglecting the opinion of the corresponding experts.

� Ask the expert to consider using another preference format to express his/her opinions.
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9.6 Fuzzy Group Decision-Making Methods

Some group decision-making methods are more suitable than others for a particular group or
a particular problem. With the accessibility to various methods, it becomes possible for the
group to deal more effectively with diverse types of problems (Zhang and Lu, 2009). Here, we
give further details on how the three strategies, AIE, AIC, and AIR, can extend the methods
for multiattribute analysis based on 〈X, R〉 models, including the ones described in Chapter 7,
to deal with the group environment. The beginning of the group decision process, regardless
of the selected strategy, always involves the following actions:

� Definition of the group standards. It is desirable that all members agree upon the strategy
they are going to utilize and, if AIE or AIC is selected by the group, a multiattribute decision
technique to be utilized must be selected as well. It is also important that the group defines
how the members are going to communicate: that is, which media they are going to use and
how the interactive conversations are going to be organized.

� Weight assignment for each expert. The moderator or the group should select an approach
for specifying the importance weights for each expert. As discussed in Section 9.3, each
expert can specify a weight to him/herself; the moderator (or manager) can assign a weight
to each expert with the use of an elicitation tool or a mathematical model can be utilized to
estimate these weights.

� Identification of the problem. Certain aspects of the problem are specified with the help of
all members: that is, the goals to be achieved and the requirements to be satisfied by the
possible alternatives.

After a consensual statement of the problem and specification of group standards have been
obtained, the group should focus on the design of a shared decision space, that is, the set
of alternatives and the set of criteria to be considered by the group, in the decision process.
Thus, the following actions should be carried out, although not necessarily in a chronological
sequence:

� Brainstorming alternatives. In the process of creating the set of alternatives, each DM lists
a few possible alternatives they have in mind. The infeasible ones must be excluded from
further analysis and similar ones can be merged (Lu et al., 2007).

� Brainstorming criteria. Each DM proposes some criteria for the evaluation of the alternatives.
They must be correlated to the previously defined goals, in the sense that they must reflect
the level of achievement of those goals and, at the same time, allow discrimination among
alternatives. Some of the criteria proposed by the group can be eliminated from further
analysis for several reasons: two or more criteria may be sufficiently similar to be merged;
a certain criterion may be considered too ambiguous or too hard to be assessed, so that its
inclusion can reduce the validity of the results; a certain criterion may not be sufficiently
significant to be considered, as its inclusion can increase the costs of the decision process in
a unjustifiable manner.

More practical rules such as “a candidate must be named by at least three people” can also
be utilized in the brainstorming of alternatives and of criteria, in order to avoid spending
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Table 9.3 Evaluation matrix of the alternatives

F1(Xk) F2(Xk) . . . Fq (Xk)
X1 F1(X1) F2(X1) . . . Fq (X1)
X2 F1(X2) F2(X2) . . . Fq (X2)
. . . . . . . . . . . . . . .

Xn F1(Xn) F2(Xn) . . . Fq (Xn)

excessive amounts of time in these phases (Bui and Jarke, 1986). The use of such rules may
be particularly effective when the group is so large that it is difficult to achieve a perfect
consensus on the definition of a shared decision space.

Next, each strategy is presented as sequential actions. The steps related to the multiattribute
decision method are omitted here. However, it should be indicated that if, during the execution
of the selected multiattribute decision method, it becomes necessary to specify the importance
weight of each criterion, it is possible to use a group version of AHP to estimate them (Forman
and Peniwati, 1998).

Let us begin with AIE, which can be outlined as follows:

Step 1. The experts individually evaluate each alternative, taking into account
each criterion Fp, p = 1, 2, . . . , q, using fuzzy or linguistic estimates F y

p (Xk),
p = 1, 2, . . . , q, y = 1, 2, . . . , v, Xk ∈ X.

Step 2. The fuzzy estimates provided by each expert for each alternative are
aggregated into collective estimates FC

p (Xk), p = 1, 2, . . . , q, Xk ∈ X, using the
weighted sum given by (9.1). At the end of the current step, an evaluation matrix
similar to the one shown in Table 9.3 is obtained.

Step 3. Afterward, with the collective evaluation matrix at hand, the fuzzy prefer-
ence relations that represent each criterion are constructed on the basis of (6.12)
and (6.13) if F is a quantitative criterion (attribute) or on the basis of (6.14) and
(6.15) if F is a qualitative criterion (attribute).

Step 4. Finally, the procedure selected by the group to perform the multiattribute
analysis is executed.

Example 9.5. Strategy AIE is utilized here jointly with the first technique (refer to Chapter 7
for its description) to analyze 〈X, R〉 models to solve a group decision problem, where a set of
five experts E = {E1, E2, . . . , E5} must rank four alternatives X = {X1, X2, X3, X4}, taking
into account three criteria F = {F1, F2, F3}. As the professionals are considered to be of the
same importance, the weights are set as wy = 0.2, y = 1, 2, . . . , 5.

In Step 1, the specialists are asked to give their opinion relative to each alternative in terms
of fuzzy estimates, using the linguistic values shown in Figure 9.4. Table 9.4 presents all the
linguistic estimates provided by the experts.

In Step 2, a collective fuzzy estimate is obtained for each alternative taking into account each
criterion, using (9.1). The aggregated fuzzy estimates are shown in Table 9.5 and represented
in Figure 9.5.
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Figure 9.4 Membership functions for normalized fuzzy values.

Table 9.4 Evaluation matrix of the alternatives

F1

E1 E2 E3 E4 E5

X1 very large very large very large large very large
X2 very small very small small small small
X3 small middle middle small small
X4 large large large middle large

F2

E1 E2 E3 E4 E5

X1 middle middle small middle middle
X2 very large very large large very large large
X3 large very large very large very large very large
X4 very small very small very small small very small

F3

E1 E2 E3 E4 E5

X1 small very small very small small very small
X2 middle small small middle small
X3 large middle middle middle middle
X4 large large very large large very large

Table 9.5 Collective fuzzy estimates.

F1 F2 F3

X1 {0.7, 0.9, 0.96, 1} {0.2, 0.4, 0.5, 0.7} {0, 0.08, 0.15, 0.35}
X2 {0, 0.12, 0.2, 0.4} {0.65, 0.85, 0.92, 1} {0.05, 0.21, 0.3, 0.5}
X3 {0.1, 0.3, 0.4, 0.6} {0.7, 0.9, 0.96, 1} {0.3, 0.5, 0.6, 0.8}
X4 {0.45, 0.65, 0.75, 0.95} {0, 0.04, 0.1, 0.3} {0.6, 0.8, 0.88, 1}
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Figure 9.5 Collective fuzzy estimates.

The following fuzzy nonstrict preference relations are derived from the collective fuzzy
estimates with the use of (6.14) and (6.15):

R1 =

⎡

⎢
⎢
⎣

1 1 1 1
0 1 0.75 0
0 1 1 0.375

0.625 1 1 1

⎤

⎥
⎥
⎦ (9.25)

R2 =

⎡

⎢
⎢
⎣

1 0.125 0 1
1 1 1 1
1 1 1 1

0.25 0 0 1

⎤

⎥
⎥
⎦ (9.26)

R3 =

⎡

⎢
⎢
⎣

1 0.831 0.125 0
1 1 0.5 0
1 1 1 0.5
1 1 1 1

⎤

⎥
⎥
⎦ (9.27)
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By applying the first technique (see its description in Chapter 7), the intersection of (9.25)–
(9.27) leads to

R =

⎡

⎢
⎢
⎣

1 0.125 0 0
0 1 0.5 0
0 1 1 0.375

0.25 0 0 1

⎤

⎥
⎥
⎦ (9.28)

Then, applying (5.35) to (9.28), the fuzzy strict preference relation is obtained

P =

⎡

⎢
⎢
⎣

0 0.125 0 0
0 0 0 0
0 0.5 0 0.375

0.25 0 0 0

⎤

⎥
⎥
⎦ (9.29)

Finally, by applying (7.54) to (9.29), we obtain the fuzzy nondominance degree of each
alternative

ND = [0.75 0.5 1 0.625] (9.30)

which corresponds to the following ranking of the alternatives: X3 � X1 � X4 � X2.

If AIC is the selected strategy to work in the group environment, the following steps should
be executed:

Step 1. The experts provide their preferences, taking into account each criterion,
using any preference format among the ones considered in Chapter 6. It is nec-
essary to check the consistency of the individual preference judgments, which
are provided in terms of fuzzy preference relations or multiplicative preference
relations. As a general rule, the experts are supposed to provide judgments that
satisfy at least weak transitivity. But if any of them cannot perform this task, it may
be helpful to call an analyst to do so, as in the process of consistency improvement
outlined in Chapter 6.

Step 2. All information is converted into nonreciprocal fuzzy preference relations,
which are taken as a uniform base to construct the aggregated fuzzy preference
relations per criterion and, subsequently, to perform the multiattribute analysis.

Step 3. A collective fuzzy preference relation per criterion is obtained using an
aggregation operator such as OWA, min, WAM, or WGM.

Step 4. It is necessary to check whether each collective fuzzy preference relation
satisfies at least the weak transitivity condition; otherwise, one of the actions to
deal with the problem of collective inconsistency, listed at the end of Section 9.6,
should be implemented.
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Step 5. Having at hand a consistent collective fuzzy preference relation per crite-
rion, it is possible to apply any one among the multiattribute techniques for the
analysis of 〈X, R〉 models described in Chapter 7.

Example 9.6. The same problem considered in Example 9.5 is now solved using the AIC
strategy jointly with the third technique for analyzing the 〈X, R〉 model. In this way, first, the
experts provided their preferences using different formats. For the sake of simplicity, we omit
here the details concerning both Step 1 and Step 2 of this strategy and go straight to Step
3, assuming that all information provided by the experts has already been translated into the
format of nonreciprocal fuzzy preference relations. In this way, we have:

� Preferences of E1:

R1
1 =

⎡

⎢
⎢
⎣

1 1 1 1
0 1 1 0
0 1 1 0
1 1 1 1

⎤

⎥
⎥
⎦ , R1

2 =

⎡

⎢
⎢
⎣

1 0 0.5 1
1 1 1 1
1 0.44 1 1

0.53 0 0 1

⎤

⎥
⎥
⎦ , R1

3 =

⎡

⎢
⎢
⎣

1 1 0 0
1 1 0 0
1 1 1 1
1 1 1 1

⎤

⎥
⎥
⎦ (9.31)

� Preferences of E2:

R2
1 =

⎡

⎢
⎢
⎣

1 0.33 0.4 1
1 1 1 1
1 1 1 1
1 0.36 0.44 1

⎤

⎥
⎥
⎦ , R2

2 =

⎡

⎢
⎢
⎣

1 0.53 0.54 1
1 1 1 1
1 1 1 1
1 0.61 0.51 1

⎤

⎥
⎥
⎦ ,

R2
3 =

⎡

⎢
⎢
⎣

1 1 1 0.63
0.63 1 0.63 0

1 1 1 0.63
1 1 1 1

⎤

⎥
⎥
⎦ (9.32)

� Preferences of E3:

R3
1 =

⎡

⎢
⎢
⎣

1 1 1 1
0 1 1 0.5
0 1 1 0.35
1 1 1 1

⎤

⎥
⎥
⎦ , R3

2 =

⎡

⎢
⎢
⎣

1 0 0.64 1
1 1 1 1
1 0.72 1 1
1 0 0.53 1

⎤

⎥
⎥
⎦ , R3

3 =

⎡

⎢
⎢
⎣

1 0.72 0.84 0
1 1 1 0
1 1 1 0
1 1 1 1

⎤

⎥
⎥
⎦

(9.33)

� Preferences of E4:

R4
1 =

⎡

⎢
⎢
⎣

1 1 1 1
0 1 1 0.23
0 1 1 0.35

0.44 1 1 1

⎤

⎥
⎥
⎦ , R4

2 =

⎡

⎢
⎢
⎣

1 0.63 0.63 1
1 1 1 1
1 1 1 1

0.63 0 0 1

⎤

⎥
⎥
⎦ , R4

3 =

⎡

⎢
⎢
⎣

1 1 0.46 0
1 1 0.64 0
1 1 1 0.55
1 1 1 1

⎤

⎥
⎥
⎦

(9.34)
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� Preferences of E5:

R5
1 =

⎡

⎢
⎢
⎣

1 1 1 1
0 1 1 0
0 1 1 0
1 1 1 1

⎤

⎥
⎥
⎦, R5

2 =

⎡

⎢
⎢
⎣

1 0.41 0 1
1 1 1 1
1 0.32 1 1

0.6 0 0.64 1

⎤

⎥
⎥
⎦, R5

3 =

⎡

⎢
⎢
⎣

1 1 1 0.63
0.63 1 0.63 0

1 1 1 0.63
1 1 1 1

⎤

⎥
⎥
⎦

(9.35)

As in Example 9.5, we consider again the professionals with the same importance, which
results in wy = 0.2, y = 1, 2, . . . , 5. In Step 3, the individual fuzzy preference relations are
aggregated using WAM in the following collective fuzzy preference relations:

RC
1 =

⎡

⎢
⎢
⎣

1 0.87 0.88 1
0.2 1 1 0.35
0.2 1 1 0.34

0.89 0.87 0.89 1

⎤

⎥
⎥
⎦ (9.36)

RC
2 =

⎡

⎢
⎢
⎣

1 0.31 0.46 0.8
1 1 1 1
1 0.70 1 1

0.75 0.12 0.34 1

⎤

⎥
⎥
⎦ (9.37)

RC
3 =

⎡

⎢
⎢
⎣

1 0.94 0.66 0.25
0.85 1 0.58 0

1 1 1 0.56
1 1 1 1

⎤

⎥
⎥
⎦ (9.38)

In Step 4, a test confirms that (9.36)–(9.38) satisfy the weak-transitivity condition (refer to
Chapter 7 for a test of weak-transitivity based on the Orlovsky choice function) and, therefore,
can be exploited in the subsequent multiattribute analysis.

In Step 5, the third technique, which is described in Chapter 7, is applied. Therefore, first,
the fuzzy strict preference relation is calculated for each criterion by means of (5.35), which
results in

P1 =

⎡

⎢
⎢
⎣

0 0.67 0.68 0.11
0 0 0 0
0 0 0 0
0 0.53 0.55 0

⎤

⎥
⎥
⎦ (9.39)

P2 =

⎡

⎢
⎢
⎣

0 0 0 0.25
0.69 0 0.3 0.88
0.54 0 0 0.66

0 0 0 0

⎤

⎥
⎥
⎦ (9.40)

P3 =

⎡

⎢
⎢
⎣

0 0.09 0 0
0 0 0 0

0.34 0.46 0 0
0.75 1 0.44 0

⎤

⎥
⎥
⎦ (9.41)
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Then, by applying (7.54) to (9.39)–(9.41), the fuzzy sets of nondominated alternatives are
calculated for each criterion separately as follows:

ND1 = [1 0.33 0.32 0.89] (9.42)

ND2 = [0.31 1 0.7 0.12] (9.43)

ND3 = [0.25 0 0.56 1] (9.44)

The intersection of (9.42)–(9.44) with the use of (7.76) results in

ND = [0.25 0 0.32 0.12] (9.45)

which corresponds to the following ranking of the alternatives: X3 � X1 � X4 � X2.

Finally, AIR involves the execution of the following specific steps to allow the use of the
multiattribute decision methods for analyzing the 〈X, R〉 model in a group environment:

Step 1. The experts provide their preferences taking into account each criterion
using any preference format considered in Chapter 6. As in AIC, it is important to
assure that all experts supply consistent judgments.

Step 2. All information is translated to nonreciprocal fuzzy preference relations,
which is the preference format utilized to perform the multiattribute analysis.

Step 3. The problem is solved taking into account, separately, the information
provided by each expert. As already mentioned, each expert is free to use a
different decision method.

Step 4. The fuzzy nondominance degrees of each alternative, obtained by dealing
with the preferences of each expert, independently, are aggregated using OWA,
min, WAM, or WGM.

Example 9.7. The same problem considered in both Examples 9.5 and 9.6 is now solved using
strategy AIR. As in Example 9.6, the experts are allowed to provide their preferences using
different formats. But, for the sake of simplicity, we assume that each expert provides the same
preferences as in Example 9.6. The details concerning both Step 1 and Step 2 of this strategy
are omitted: we go directly to Step 3, assuming that all preference information provided by
the experts has already been converted to nonreciprocal fuzzy preference relations. Further,
we also assume that, in the opinion of all experts, all criteria are equally important and their
corresponding weights should not be differentiated. Regarding the decision method selected
by each expert, we consider that all of them agreed to use the first technique for analyzing the
〈X, R〉 model.

We begin execution of the first technique by performing the intersection of R1, R2 and R3,
with the use of the min operator (obviously, the preferences of each expert are considered
separately). Thus we have:
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� Expert E1:

R1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0.44 1 0

0.53 0 0 1

⎤

⎥
⎥
⎦ (9.46)

� Expert E2:

R2 =

⎡

⎢
⎢
⎣

1 0.33 0.4 0
0.63 1 0.63 0

1 1 1 0.63
1 0.36 0.44 1

⎤

⎥
⎥
⎦ (9.47)

� Expert E3:

R3 =

⎡

⎢
⎢
⎣

1 0 0.64 0
0 1 1 0
0 0.72 1 0
1 0 0.53 1

⎤

⎥
⎥
⎦ (9.48)

� Expert E4:

R4 =

⎡

⎢
⎢
⎣

1 0.63 0.46 0
0 1 0.64 0
0 1 1 0.35

0.44 0 0 1

⎤

⎥
⎥
⎦ (9.49)

� Expert E5:

R5 =

⎡

⎢
⎢
⎣

1 0.41 0 0.63
0 1 0.63 0
0 0.32 1 0

0.6 0 0.64 1

⎤

⎥
⎥
⎦ (9.50)

Then, by applying (5.35) to the fuzzy nonstrict preference relations (9.46)–(9.50), separately,
the corresponding strict fuzzy preference relations are obtained:

� Expert E1:

P1 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0.44 0 0

0.53 0 0 0

⎤

⎥
⎥
⎦ (9.51)
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� Expert E2:

P2 =

⎡

⎢
⎢
⎣

0 0 0 0
0.3 0 0 0
0.6 0.37 0 0.19
1 0.36 0 0

⎤

⎥
⎥
⎦ (9.52)

� Expert E3:

P3 =

⎡

⎢
⎢
⎣

0 0 0.64 0
0 0 0.28 0
0 0 0 0
1 0 0.53 0

⎤

⎥
⎥
⎦ (9.53)

� Expert E4:

P4 =

⎡

⎢
⎢
⎣

0 0.63 0.46 0
0 0 0 0
0 0.36 0 0.35

0.44 0 0 0

⎤

⎥
⎥
⎦ (9.54)

� Expert E5:

P5 =

⎡

⎢
⎢
⎣

0 0.41 1 0.03
0 0 0.31 0
0 0 0 0
0 0 0.64 0

⎤

⎥
⎥
⎦ (9.55)

Finally, by applying (7.54) to (9.51)–(9.55), we obtain the fuzzy nondominance degree of each
alternative:

� Expert E1:

ND1 = [0.47 0.56 1 1] (9.56)

� Expert E2:

ND2 = [0.4 0.63 1 0.81] (9.57)

� Expert E3:

ND3 = [0 1 0.36 1] (9.58)

� Expert E4:

ND4 = [0.56 0.37 0.54 0.65] (9.59)
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� Expert E5:

ND5 = [1 0.59 0.36 0.97] (9.60)

It should be mentioned that, in individual decision-making, the fuzzy nondominance values
obtained for experts E1 and E3 have not permitted us to distinguish the alternatives X3 and
X4 and X2 and X4, respectively.

As the group agreed that all criteria are equally important, we can go straight to Step 4 and
aggregate all individual results with the use of WAM, which gives rise to the following:

NDC = [0.49 0.63 0.65 0.89] (9.61)

All alternatives can be distinguished on the basis of the collective results, which lead to the
following ranking: X4 � X3 � X2 � X1.

9.7 Conclusions

In this chapter, we have presented three strategies for dealing with the input of multiple
experts in the analysis of 〈X, R〉 models, for multiattribute decision-making, namely AIE, AIC,
and AIR.

Each strategy allows for the more or less flexible participation of each expert in the decision
process. For instance, in AIR, the experts can select any preference format among the ones
presented in Chapter 6 to express their preferences, as well as choose any decision technique
among the ones described in Chapter 7 to complete the multiattribute analysis. On the other
hand, AIE is the least flexible strategy in the sense that it requires all experts to use fuzzy or
linguistic estimates to express their respective opinions and the group of experts is handled as
a unique individual since the beginning of the decision process, which is supposed to use a
unique decision method to solve the problem. AIC can be considered an intermediate strategy:
it allows a flexible preference input as in the AIR strategy. But all experts are handled as a
unique individual, who is supposed to use a unique decision method as in the AIE strategy.

In practical applications, as discussed in Section 9.2, the group can select the most appro-
priate strategy in accordance with the requirements of each member and the characteristics
of the group as a whole. However, it is important to mention that each strategy may lead
to a different result. In Problems 9.2, 9.3, and 9.4 below, the reader is invited to solve the
same decision problem, considering the same input of each expert and the same method for
multiattribute analysis, but using strategies AIE, AIC, and AIR each time. The results obtained
using different strategies do not necessarily coincide. A priori, we cannot identify an approach
producing the best results as a general rule, but some aspects may help us to answer this ques-
tion for each specific application. For instance, when AIC is being used, we should consider
that inconsistent collective fuzzy preference relations may reduce the validity of the results.
When AIE is being used, very discrepant opinions may reduce the validity of its results if the
weighted sum is utilized to aggregate the individual estimates (we should remember that the
weighted sum may generate an intermediate collective fuzzy estimate that does not satisfy
any expert among the group). However, if none of these aspects affects the results, it becomes
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more difficult to identify which is the most reasonable result, unless we consider the level of
satisfaction of group members.

Exercises

Problem 9.1. Consider the fuzzy preference relations R1and R2 shown below. Check whether
they satisfy weak transitivity (hint: verify whether the nonfuzzy, nondominated set XNFND is
nonempty, as described in Chapter 7). Aggregate them in a collective fuzzy preference relation
using WAM and the collections of weights given by (w1 = 0.4, w2 = 0.6) and (w1 = 0.6,
w2 = 0.4). Verify whether each aggregated fuzzy preference relation satisfies weak transitivity.

R1 =
⎡

⎣
1 0.8 1
1 1 1

0.8 0.2 1

⎤

⎦ , R2 =
⎡

⎣
1 1 0.4

0.8 1 1
1 0.8 1

⎤

⎦

Problem 9.2. Consider a decision problem, which involves the ranking of alternatives
X1, X2, X3, and X4 taking into account the criteria F1, F2, and F3, under group settings.
Suppose that three experts supplied their opinions by means of the linguistic estimates shown
in Figure 9.4. Table 9.6 presents all the linguistic estimates provided by the experts. Obtain
the ranking of all alternatives from the best to the worst, using the AIE strategy and the sec-
ond technique for the analysis of 〈X, R〉models. Assume that all experts have the same level
of influence and that the criteria are arranged in the following order of importance:p = 1,

p = 2, and p = 3.

Table 9.6 Evaluation matrix of the alternatives

F1

E1 E2 E3

X1 large middle middle
X2 middle middle small
X3 small middle middle
X4 large small middle

F2

E1 E2 E3

X1 middle middle small
X2 very large very large large
X3 large very large very large
X4 very small very small very small

F3

E1 E2 E3

X1 small very small very small
X2 middle small small
X3 large middle middle
X4 large large very large
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Problem 9.3. Consider a decision problem which involves the ranking of alternatives
X1, X2, X3, and X4 taking into account the criteria F1, F2, and F3, under group settings.
Suppose that three experts supplied their opinions by means of the nonreciprocal fuzzy pref-
erence relations shown next (you can see that these fuzzy preference relations coincide with
the ones constructed on the basis of the linguistic estimates provided by each expert in the
previous exercise):

� Preferences of E1:

R1
1 =

⎡

⎢
⎢
⎣

1 1 1 1
0.62 1 1 0.62

0 0.62 1 0
1 1 1 1

⎤

⎥
⎥
⎦, R1

2 =

⎡

⎢
⎢
⎣

1 0 0.62 1
1 1 1 1
1 0.62 1 1
0 0 0 1

⎤

⎥
⎥
⎦, R1

3 =

⎡

⎢
⎢
⎣

1 0.62 0 0
1 1 0.62 0.62
1 1 1 1
1 1 1 1

⎤

⎥
⎥
⎦

� Preferences of E2:

R2
1 =

⎡

⎢
⎢
⎣

1 1 1 1
1 1 1 1
1 1 1 1

0.62 0.62 0.62 1

⎤

⎥
⎥
⎦ , R2

2 =

⎡

⎢
⎢
⎣

1 0 0 1
1 1 1 1
1 1 1 1
0 0 0 1

⎤

⎥
⎥
⎦ , R2

3 =

⎡

⎢
⎢
⎣

1 0.62 0 0
1 1 0.62 0
1 1 1 0.62
1 1 1 1

⎤

⎥
⎥
⎦

� Preferences of E3:

R3
1 =

⎡

⎢
⎢
⎣

1 1 1 1
0.62 1 0.62 0.62

1 1 1 1
1 1 1 1

⎤

⎥
⎥
⎦ , R3

2 =

⎡

⎢
⎢
⎣

1 0 0 1
1 1 0.62 1
1 1 1 1
1 0 0 1

⎤

⎥
⎥
⎦ , R3

3 =

⎡

⎢
⎢
⎣

1 0.62 0 0
1 1 0.62 0
1 1 1 0
1 1 1 1

⎤

⎥
⎥
⎦

Solve the multiattribute decision problem with the use of the AIC strategy combined with the
second technique for analyzing the 〈X, R〉model. Consider that all experts exhibit the same
level of importance and use the WAM aggregation operator in order to obtain the collective
fuzzy preference relations. In the multiattribute analysis, suppose that the criteria are arranged
in the following order of importance: p = 1, p = 2, and p = 3.

Problem 9.4. Solve the group decision problem from the previous exercise. Now, use strategy
AIR, combined with the second technique for analyzing the 〈X, R〉 model. In the multicriteria
analysis, suppose that the criteria are arranged in the following order of importance: p = 1,

p = 2, and p = 3. Consider that all experts have the same importance and use the WAM
aggregation operator to generate a collective result.

Problem 9.5. Do the results obtained in Problems 9.2, 9.3 and/or 9.4 coincide? Analyze the
results from each exercise and, considering the discussion presented in Section 9.7, indicate
which, in your opinion, is the most satisfactory result.
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10
Use of Consensus Schemes
in Group Decision-Making

In this chapter, we present a suite of procedures for achieving a consensus in the analysis of
discrete multicriteria decision-making problems, which involves the evaluation, comparison,
choice, prioritization, and/or ordering of alternatives, in a group environment. The chapter
brings together two different approaches for the construction of collective opinions under a
rubric of satisfactory consensus: the consensus schemes and the procedures for the formation of
an optimized consensus. Whereas the former approach requires experts to review and update
their respective opinions within the process of an iterative discussion, the latter approach
represents an attempt to automate the process of constructing and improving the collective
opinion, in such a way that the level of consensus in the group becomes elevated. Each
approach has its own advantages and drawbacks. The selection of the most suitable method
for a specific application depends mostly on the available time and on the cost of facilitating
meetings among the members of the group.

10.1 Consensus in Group Decision-Making

As discussed in Chapter 9, when dealing with multicriteria decision problems under group
settings, conflicting opinions among group members are very likely to occur, even in a coop-
erative environment. As Shanteau (2001) points out, disagreements between domain experts
are inevitable and should not be taken as evidence of the incompetence of any expert, but a
reflection of the way that experts think and a consequence of the type of work they do. For
instance, in medicine, there may be diverse treatments for an illness. If one treatment does
not work as expected, the physician seeks another one (Shanteau, 2001). It should not be
surprising to find experts disagreeing about which course of action should be taken. However,
as in practice only one strategy can be implemented, finding a unique solution is crucial, in
spite of the discordances among the experts.
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The importance of achieving a satisfactory level of concordance among the experts has
motivated several researchers to develop procedures for increasing the rationality of the col-
lective solution, as well as the efficiency of the discussion among experts. If we concentrate
our attention on the available procedures, we can note that they follow two types of approaches
(Ben-Arieh and Chen, 2006; Ekel et al., 2009):

� The consensus schemes. These consist of a systematic and iterative discussion process,
implemented under the supervision of a moderator, with the intention of reducing the
discordance among opinions. The consensus is achieved as long as the experts move from
their original positions toward a predominant opinion.

� Procedures for constructing an optimized consensus. These consist of a method for ob-
taining a suitable adjustment of the weight associated with the opinion of each expert, in
order to improve a consensus index. In this approach, the experts are not supposed to mod-
ify their opinions toward a consensus. The weighted aggregation of individual opinions,
with a suitable adjustment of weights, is the exclusive arbitration scheme for defining the
collective decision.

Both approaches have some advantages and disadvantages, which can make one or the other
approach most suitable for a certain application. As Ekel et al. (2009) points out, the main
disadvantage of automatically constructing an optimized consensus lies in the fact that the
opinion of a discordant expert, having deep knowledge of the problem, can be easily neglected.
This may occur because the process of forming an optimal set of weights may demand an
excessive reduction of the weight associated with his/her opinion. Further, the process of
obtaining an adequate set of weights may demand significant computational effort. On the
other hand, the consensus scheme also has some drawbacks. In order to achieve an adequate
level of consensus, a discordant expert may have to change drastically his/her initial position
and, maybe, in an unjustified way. Moreover, the experts may be repeatedly invited to review
their respective opinions, making the discussion last too long and, as a consequence, being too
ineffective and expensive, if not frustrating.

However, it should be mentioned that, in spite of the drawbacks of consensus schemes,
the current literature contains several valuable arguments in favor of its use. As has been
recognized in several studies (see for instance Bui and Jarke, 1986; Madu and Kuei, 1995;
Salo, 1995; Jiang and Klein, 2000), human preferences are not rigid, in the sense that they may
be formed (when they do not even exist at the beginning of the decision process) or changed
during the discussion. Further, it is also true that discordant members may have access to
exclusive information which could influence their respective opinions. Hence, we cannot
neglect the fact that, by promoting further discussions among the participants, it is possible to
modify their opinions, in such a way that their discordances are minimized. Furthermore, it
is also possible to gather vital information for the decision process, which can lead the group
toward more rational and better justified outcomes (Madu and Kuei, 1995; Salo, 1995).

In this way, as a general rule, when it is desirable to achieve a consensus among the experts
but it is impossible to allow group members to discuss their conflicting opinions, due to the
large size of the group or to logistic, timing, or monetary restrictions, the first approach should
be utilized. Otherwise, whenever it is feasible to give all experts the opportunity to discuss
their discordances, the consensus scheme should be applied.
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10.2 Consensus Schemes: Definition and Motivation

A consensus scheme can be defined as an interactive multistage process, in which the experts
discuss the problem in a systematic way, toward a consensual decision (Herrera-Viedma,
Herrera, and Chiclana, 2002). The discussion is conducted by a human or artificial moderator,
playing the role of an impartial arbiter who has authority to indirectly interfere in the process,
with the purpose of helping the group to achieve better solutions.

Intuitively, we know that discussions on concordant assignments are meaningless, in the
sense that they usually have no power to change the collective decision. Thus, in practice, it is
more fruitful to rapidly bypass the concordant opinions and intensify efforts for minimizing
the discordances.

A priori, discordant opinions should not be neglected, as they can help the group to identify
sources of crucial information for the decision (Madu and Kuei, 1995). Actually, in practice, a
discordant expert with persuasive abilities can convince other members of the group to modify
their own positions and, as a result, the predominant position in the group can move toward a
more justifiable decision.

Taking all of this into consideration, the guiding principle of the discussions among experts,
under the context of group decision-making, should be to gather more information at each
round in an effective way. Inadequate interactions among members affect the efficiency of
the discussions, resulting in unsatisfactory outcomes and/or time-consuming and unfruitful
debates. In this context, the participation of a human or artificial moderator becomes essential,
in order to conduct the discussion and reduce time losses inherent in group meetings. The basic
dynamic iteration among the experts and the moderator should be as follows: at each cycle,
the moderator should identify the least concordant specialist from the group in order to invite
him/her to review his/her opinion. The invited expert is supposed to acquire more information
on the problem in order to review his/her opinion, which can be changed or maintained. As
already mentioned, in the last case, it may be helpful to invite the expert to let the group
know the reason for his/her assignment, because that explanation possibly contains original
information that can change the opinions of the other experts (Madu and Kuei, 1995; Eklund,
Rusinowska, and De Swart, 2007). If the expert refuses to change his/her opinion, then the
moderator should identify and invite the second least concordant expert (and so forth), in
order to allow the other members of the group to review their opinions, taking into account the
arguments of the least concordant expert. This cyclic iteration is repeated until a stop condition
has been satisfied.

Ideally, the condition for terminating the discussion should be the achievement of a perfect
concordance among all experts. However, in reality, it is implemented by means of verifying
whether the current level of an index of consensus is higher than a minimum threshold value.
Other conditions are also admissible, but we leave this subject till Section 10.6. In the next
section, we focus on some basic tools utilized by the moderator to control the discussion: the
consensus and the concordance indices.

10.3 Fuzzy Concordance and Fuzzy Consensus Measures

Let us focus on methods designed for constructing a consensus within a group of experts
E = {E1, E2, . . . , Ev} on a solution for a discrete multicriteria decision problem, which
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involves the ranking of a discrete set of alternatives X = {X1, X2, . . . , Xn}, taking into account
a set of criteria F = {F1, F2, . . . , Fq}.

The fuzzy environment offers several types of mathematical models which can be utilized as
common media for expressing, associating, and comparing the preferences of each expert. In
Chapter 9, we considered several aggregation rules for associating the individual preferences
expressed in terms of fuzzy estimates, fuzzy preference relations, or fuzzy sets of nondominated
alternatives. Here, we move further on and study the indices of concordance and consensus,
which are essential tools for measuring the degree of compatibility between the preferences
reflected in those different forms.

The concordance index is a function that quantifies the level of similarity or correspondence
between any pair of opinions. For practical purposes, it is supposed to satisfy some conditions
such as (Garcı́a-Lapresta, 2008):

� it achieves its maximum value only if both opinions are identical;
� the value of the index depends on the agreement between two opinions, regardless of which

expert is responsible for each opinion.

In consensus schemes, the main use of a concordance index is associated with the identification
of the least concordant expert in each cycle of the discussion. As already mentioned, this expert
is supposed to review his/her opinion or to explain it to the group. With the use of such an
index, it is possible to calculate the level of concordance between the current opinion of each
expert and the group’s temporary opinion or the level of concordance among the opinions of all
experts, in order to identify who is the expert with the most discrepant opinion within the group.

The consensus index assumes values in the unit interval and is modeled as a function
that quantifies how far a group of experts is from perfect unanimity. Here, the value of
1 corresponds to full and unanimous concordance, whereas 0 corresponds to nonexistent
concordance. Intermediate values, between 0 and 1, are also possible to reflect levels of partial
agreement among all experts.

The classical definition of the term “consensus” as a unanimous concordance among in-
dividuals has been considered excessively binary (two valued) or rigid to characterize the
agreement among group members. A Boolean (two-valued) notion of consensus does not
allow different levels of concordance to be distinguished among experts. Such discrimination
is important due to the fact that, in practice, the discussion process toward a consensus is
frequently interrupted before a perfect concordance among experts is achieved, considering
that a perfect consensus is almost unachievable. In this way, with the use of a consensus index,
it becomes possible to interrupt the discussion at an earlier moment, as soon as an acceptable
level of concordance has been achieved.

Next, we describe different indices of concordance and consensus which have been proposed
in the literature and can be utilized to deal with information expressed in three different formats:
fuzzy estimates, fuzzy preference relations, and fuzzy sets of nondominance.

Let us begin by considering the comparison of opinions expressed in terms of fuzzy es-
timates. In this case, we can utilize a concordance index that reflects the level of similarity
between a pair of fuzzy estimates and a consensus index that reflects the mean level of similar-
ity among a collection of fuzzy estimates. The concordance index proposed in Hsu and Chen
(1996) and improved in Lu, Lan, and Wang (2006), which combines both fuzzy distance and
fuzzy similarity concepts, allows a fair comparison between a pair of fuzzy estimates.
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The weighted similarity between the fuzzy estimates F y
p (Xk) and Fz

p(Xk), which are pro-
vided by the yth expert and the zth expert, respectively, is given by (Lu, Lan, and Wang, 2006)

Sw

(
F y

p (Xk), Fz
p(Xk)

) =
∫

x min
(
F y

p (Xk), Fz
p(Xk)

)2
dX

∫
x max

(
F y

p (Xk), Fz
p(Xk)

)2
dX

. (10.1)

where the ratio between the two integrals reflects the proportion of the concordant area∫
x min{F y

p (Xk), Fz
p(Xk)} dX to the total area

∫
x max{F y

p (Xk), Fz
p(Xk)} dX associated with

both fuzzy estimates.
The distance between F y

p (Xk) and Fz
p(Xk) can be calculated in the following form (Lu, Lan,

and Wang, 2006):

Dh
(
F y

p (Xk), Fz
p(Xk)

) = 1

2

[∫

x

∣∣F y
p (Xk) − Fz

p(Xk)
∣∣ dX + dinf

(
F y

p (Xk), Fz
p(Xk)

)]
(10.2)

In (10.2), the integral corresponds to the Hamming distance between F y
p (Xk) and Fz

p(Xk) and
the term dinf is given by

dinf = min
a∈Supp(F y

p (Xk ))
b∈Supp(Fz

p(Xk ))

(|a − b|) (10.3)

where Supp stands for the support of a fuzzy set, as given by expression (2.12).
In this way, if we suppose for instance that the membership functions of F y

p (Xk) and Fz
p(Xk)

correspond to the trapezoidal fuzzy numbers {a1, a2, a3, a4} and {b1, b2, b3, b4}, respectively,
then dinf = inf{|a − b|, a ∈ [a1, a4], b ∈ [b1, b4]}. The inclusion of the term dinf in (10.2) is
important to adequately handle fuzzy estimates with no intersection (Lu, Lan, and Wang, 2006).

Finally, the level of concordance between F y
p (X ) and Fz

p(X ) can be calculated as follows
(Lu, Lan, and Wang, 2006):

Sy,z
FE

(
F y

p (Xk), Fz
p(Xk)

) = βSw

(
F y

p (Xk), Fz
p(Xk)

) + (1 − β)
(
1 − Dh

(
F y

p (Xk), Fz
p(Xk)

))

(10.4)

where the parameter β, assuming values in the range 0 ≤ β ≤ 1, allows one to adjust the level
of influence of Sw and Dh on the concordance value Sy,z

FE .
As indicated in Bernardes et al. (2009), in certain cases it is beneficial to normalize Dh, by

dividing it by a constant, in order to guarantee that 0 ≤ D̄h ≤ 1. Obviously, this constant will
depend on the range of the universe of discourse being considered. This normalization will
facilitate empirically adjusting the value of β in (10.4).

The level of consensus across the group per alternative can be calculated as the
arithmetic average

CFE(Xk) = 1

v

v∑

y=1

Sy,C
FE

(
F y

p (Xk), FC
p (Xk)

)
(10.5)

where FC
p (Xk) represents the collective fuzzy estimate which may be obtained by means of

expression (9.1).
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Table 10.1 Level of concordance and consensus

S1,C
FE S2,C

FE S3,C
FE Consensus

Concordance 0.71 0.18 0.13 0.35

Example 10.1. As a continuation of Example 9.1, let us identify the least concordant expert in
the group and verify whether the level of consensus in the group is satisfactory. In this specific
case, it is assumed that the level of consensus is acceptable if it exceeds 0.5. By applying
(10.4), with β = 0.5, we obtain the levels of concordance between the opinion of each expert
and the collective opinion as shown in Table 10.1. As can be seen, E3 is the least concordant
expert in the group. The consensus level, calculated with (10.5), is equal to 0.35 and, therefore,
it is considered unacceptable.

Let us consider indices for comparing preferences expressed in terms of nonreciprocal fuzzy
preference relations. Given a pair of alternatives Xk and Xl , a simple way of calculating the
level of concordance between the preferences of two experts, namely Ey and Ez , consists of
calculating the differences

Sy,z(Xk, Xl ) = 2 − (|Ry(Xk, Xl ) − Rz(Xk, Xl )| + |Ry(Xl , Xk) − Rz(Xl , Xk)|)
2

(10.6)

where Ry corresponds to the nonreciprocal fuzzy preference relation supplied by the
yth expert.

The mean level of concordance between the preferences of Ey and Ez can also be calculated
for a single alternative Xk , with the use of the expression

SXy,z
k = 1

(n − 1)

n∑

l=1;l �=k

Sy,z(Xk, Xl ) (10.7)

or for the entire set of alternatives (which corresponds to the mean level of concordance per
relation), with the use of the expression

SRy,z = 1

n

n∑

k=1

SXy,z
k (10.8)

Finally, the level of consensus in the group can be calculated for a pair of alternatives by
aggregating Sy,C (Xk, Xl ), y = 1, 2, . . . , v, with the use of the arithmetic mean operator

C(Xk, Xl ) = 1

v

v∑

y=1

Sy,C (Xk, Xl ) (10.9)

where Sy,C (Xk, Xl ) is the level of concordance between the preferences of Ey and the collective
preferences RC

p , which can be calculated with the use of (10.6). As discussed in Chapter 9,
the collective preferences RC

p may be obtained by means of different aggregation operators as
given by (9.3), (9.4), (9.5) or (9.6).
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The mean level of consensus in the group can be calculated for a single alternative Xk as

CXk = 1

(n − 1)

n∑

l=1,l �=k

C(Xk, Xl ) = 1

v

v∑

y=1

SXy,C
k (10.10)

or for the entire set of alternatives (that is, the level of consensus per relation) as given by

CR = 1

n

n∑

k=1

CXk = 1

v

v∑

y=1

SRy,C (10.11)

Example 10.2. Let us consider three fuzzy preference relations:

R1 =
⎡

⎣
1 1 1

0.3 1 1
0 0.3 1

⎤

⎦ (10.12)

R2 =
⎡

⎣
1 1 1

0.9 1 1
0.9 1 1

⎤

⎦ (10.13)

R3 =
⎡

⎣
1 0.3 1
1 1 1

0.3 0 1

⎤

⎦ (10.14)

The aggregation of (10.12)–(10.14) by applying WAM with equal weights yields

RC =
⎡

⎣
1 0.77 1

0.73 1 1
0.4 0.43 1

⎤

⎦ (10.15)

Table 10.2 shows the concordance level per alternative, calculated for each expert by using
(10.7), and the concordance level per relation, obtained for each expert by using (10.8).
Furthermore, it also shows the mean level of consensus per alternative, calculated by using
(10.10), and the mean level of consensus per relation, obtained with the use of (10.11). If the
moderator considers that a level of consensus per relation under 0.8 is unsatisfactory, then

Table 10.2 Levels of concordance

Concordance per alternative E1 E2 E3

Consensus per
alternative

X1 0.73 0.78 0.79 0.77
X2 0.8 0.76 0.71 0.76
X3 0.87 0.73 0.87 0.82
Concordance per relation 0.80 0.76 0.79 –
Consensus per relation 0.78
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the least concordant expert, that is, E2, as can be seen in Table 10.2, can be invited to review
his/her opinion.

Given a pair of alternatives, the level of concordance between the preferences of each expert and
the collective preferences should reflect these two types of differences. One type of difference
is associated with the different orderings of the alternatives determined by the preferences of
an expert and by the collective preferences. The other type is associated with the situation
when the preferences of an expert and the collective preferences determine the same ordering
of the alternatives, but they differ in the intensity of the preference of one alternative over
the other.

For practical purposes, few may agree that the first type of difference is more critical than
the second type, in the sense that it is more valuable to invite an expert with a different
ordering of the alternatives to review or explain his/her preferences than an expert with the
same ordering of the alternatives, but with different levels of preferences. A simple procedure
is proposed here in order to accentuate the effect of the former type of difference in the
calculation of the level of concordance, so that the concordance index (10.8) allows one to
identify the expert whose preferences are different than the collective preferences in a more
critical way. This procedure implies consideration of a modified version of the collective fuzzy
preference relation to calculate the concordance index. As long as the original collective fuzzy
preference relation satisfies weak transitivity, the modified collective fuzzy preference relation
can be obtained through a nonlinear transformation of the original collective fuzzy preference
relation in accordance with the following rule: if R(Xk, Xl ) < 1 and R(Xl , Xk) < 1, pick the
maximum value between R(Xk, Xl ) and R(Xl , Xk) and set it equal to one. Considering that the
matrix corresponding to the collective fuzzy preference relation may present pairs of entries
verifying R(Xk, Xl ) < 1 and R(Xl, Xk) < 1, this simple modification can provide a way of
accentuating the effect of differences in the ordering of the alternatives in the calculation of
the indices of concordance (10.6)–(10.8). The following example demonstrates the use of
this procedure.

Example 10.3. The reader can easily confirm that, according to (10.12) and (10.15), the
alternatives can be ordered as X1 � X2 � X3. On the other hand, (10.13) is associated with
X1 � X2 ∼ X3 and (10.14) is associated with X2 � X1 � X3. By intuition, we know that
(10.14) corresponds to the least concordant preferences with the collective preferences. How-
ever, as can be seen in Table 10.2, the level of concordance per relation calculated with
(10.6)–(10.8) indicates that E2 is the least concordant expert.

On the other hand, considering that (10.15) satisfies weak transitivity, we can apply
(10.6)–(10.8) to the following version of the collective fuzzy preference relation

RMC =
⎡

⎣
1 1 1

0.73 1 1
0.4 0.43 1

⎤

⎦ (10.16)

which is derived from (10.15) in accordance with the procedure described above (note that,
in (10.15), R(X1, X2) is equal to 0.77 and, in (10.16), it has changed to 1). The resulting
indices of concordance are shown in Table 10.3. It is worth noting that, coherently with our
expectations, E3 has become the least concordant expert in the group.
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Table 10.3 Levels of concordance for the modified collective fuzzy preference relation

Concordance per alternative E1 E2 E3

X1 0.79 0.83 0.73
X2 0.86 0.82 0.65
X3 0.87 0.73 0.87
Concordance per relation 0.84 0.79 0.75

Finally, let us consider indices of concordance and consensus adequate for comparing the
opinions of different experts, expressed in terms of the degree of fuzzy nondominance of
each alternative. As discussed in Herrera-Viedma, Herrera, and Chiclana (2002), different
cardinal results (which correspond to the degree of fuzzy nondominance of each alternative)
may lead to the same ranking of the alternatives. For instance, both ND1 = [0.8 1 0.6 0.7]
and ND2 = [0.81 0.9 0.3 0.57] result in X2 � X1 � X4 � X3. Although there is no perfect
concordance on the cardinal rating of each alternative, there may be a perfect consensus on their
ranking. For this reason, it is more reasonable to compare the final results of the multicriteria
analysis by taking into account the final ranking of the alternatives and not their respective
fuzzy nondominance degrees.

Therefore, let us assume that we have at hand the ranking of all alternatives, obtained in
accordance with the opinion of the group as a whole, as well as with the opinion of each expert
individually. One way of measuring the concordance between the order of an alternative Xk

for the yth expert and the zth expert is by using a decreasing function such as (Herrera-Viedma,
Herrera, and Chiclana, 2002)

SOy,z
k = 1 −

(∣∣O y
k − Oz

k

∣∣

n − 1

)b

(10.17)

where the term O y
k corresponds to the position of alternative Xk , taking into account the results

obtained by the yth expert. The constant b in (10.17) can assume any value in the interval [0, 1].
In particular, when b is close to one, the concordance measure is less rigorous than the case
when b is close to zero. Herrera-Viedma, Herrera, and Chiclana (2002) suggest the use
of 0.5, 0.7, 0.9, or 1. Besides, it is important to indicate that, when two or more alterna-
tives are considered indistinguishable because they present exactly the same level of fuzzy
nondominance, the value of Ok for each of them is given by the mean value of the po-
sitions that they would have if they were ranked in descending order of their values. For
instance, if alternatives X4 and X5 are in second position in the ranking, then O4 = O5 =
(2 + 3)/2 = 2.5.

Expression (10.17) determines the level of concordance between the results of Ey and Ez ,
restricted to alternative Xk . The average level of concordance between the results of Ey and
Ez , extended to the entire set of alternatives, is given by

SOy,z = 1

n

n∑

k=1

SOy,z
k (10.18)
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Table 10.4 Position of each alternative in the rankings obtained for
each expert and for the group

X1 X2 X3

E1 3 2 1
E2 1 2 3
E3 3 2 1
Group 3 1 2

The level of consensus can be determined for a single alternative Xk as (Herrera-Viedma,
Herrera, and Chiclana, 2002)

COk = 1

v

v∑

y=1

SOy,C
k (10.19)

where SOy,C
k is the average level of concordance between the results of Ey and the collective

results calculated with the use of (10.18).
The mean level of consensus taken over all alternatives is given by

CO = 1

n

n∑

k=1

COk (10.20)

Example 10.4. Consider that the results obtained by three experts correspond to ND1 =
[0.4 0.7 0.8], ND2 = [0.9 0.4 0.2], and ND3 = [0.1 0.4 0.5]. By using the min operator to
aggregate these results, we obtain NDC = [0.1 0.4 0.2]. Table 10.4 shows the ranking of the
alternatives derived from the individual, as well as the collective results. Table 10.5 shows
the levels of concordance between the ranking obtained in accordance with the preferences
of each expert and the ranking obtained for the group, calculated with the use of (10.17) and
considering b = 0.5. This table also shows the consensus level per alternative and the mean
level of consensus, calculated with the use of (10.19) and (10.20), respectively.

If the moderator considers the mean level of consensus under 0.6 being unsatisfactory, then
the least concordant expert, which is clearly E2, can be invited to review his/her results.

Now, let us reconsider the problem of identifying the least concordant fuzzy preference relation
in the group. When we want to guarantee that the expert with the fuzzy preference relation

Table 10.5 Concordance and consensus levels

Concordance per alternative X1 X2 X3 Mean concordance for all alternatives

E1 1 0.29 0.29 0.53
E2 0 0.29 0.29 0.19
E3 1 0.29 0.29 0.53
Consensus per alternative 0.67 0.29 0.29 –
Mean consensus for all alternatives 0.42 –
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Table 10.6 Position of each alternative in the rankings
obtained for each expert and for the group

X1 X2 X3

E1 1 2 3
E2 1 2.5 2.5
E3 2 1 3
Group 1 2 3

associated with the least concordant ordering of the alternatives is identified, we can consider
the use of two types of concordance indices in a lexicographic way. First, we can use indices
(10.17) and (10.18) to identify the least concordant ordering of the alternatives. The use of
these two indices requires the application of (5.35) and (7.54), in order to rank the alternatives
based on their respective nondominance degrees. If it is not possible to distinguish which one
among at least two different orderings is the least concordant ordering, then it is possible to
use (10.6)–(10.8) in an attempt to differentiate them. The following example demonstrates the
use of (10.17) and (10.18) to identify the least concordant fuzzy preference relation based on
the ordering of the alternatives associated with each of them.

Example 10.5. By applying (5.35) and (7.54) to each fuzzy preference relation (10.12),
(10.13), (10.14), and (10.15), we obtain the following fuzzy sets of nondominated alternatives:

ND1 = [
1 0.3 0

]
(10.21)

ND2 = [
1 0.9 0.9

]
(10.22)

ND3 = [
0.3 1 0

]
(10.23)

NDC = [
1 0.97 0.4

]
(10.24)

Table 10.6 shows the ranking of the alternatives derived from the individual, as well as the
collective results. Table 10.7 shows the levels of concordance between the ranking obtained
in accordance with the preferences of each expert and the ranking obtained for the group,
calculated with the use of (10.17) and considering b = 0.5. As can be seen, the preferences
of E3 provided the least concordant ordering of the alternatives, which is also in accordance
with the results of Example 10.3.

Table 10.7 Concordance levels

Concordance per alternative X1 X2 X3 Mean concordance for all alternatives

E1 1 1 1 1
E2 1 0.5 0.5 0.67
E3 0.29 0.29 1 0.53
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10.4 Moderator Interventions

The moderator’s (or facilitator’s) role in group decision-making is one of controlling the
exchange of information among the experts during their discussions. The ideal moderator is
supposed to be impartial and make only neutral interferences in the process of communication
among the experts. It should be emphasized that the moderator is not meant to make decisions
for the group, but is supposed to enhance the ability of the group to make decisions (Griffith,
Fuller, and Northcraft, 1998).

Ekel et al. (2009) distinguished the following three types of direct interference of the
moderator in the process of constructing a consensus:

� an invitation to the least concordant expert to review his/her opinion;
� an adjustment of the weight associated with each opinion in the construction of the collective

opinion (this adjustment is usually made with the purpose of reducing the influence of a
discordant opinion or of an inconsistent opinion);

� the activation of a computational procedure for constructing an optimized consensus (this
kind of interference will be discussed in Section 10.5).

Here, we consider an indirect type of moderator interference, which is related to a feedback
mechanism for communicating with the least concordant expert, that is, the differences between
his/her own opinions and the collective opinion. Theoretically, this information should be
utilized by the least concordant expert only as a reference for modifying or explaining his/her
discordant position. However, it is important to indicate that this feedback does not always
contribute to achieving a consensus. Although all experts are expected to contribute their true
opinions, when the intermediate results do not satisfy a member of the group, it is not rare for
this expert to exaggerate his/her judgments in order to move the aggregated opinion toward
his/her opinion. Obviously, one way of mitigating this undesirable effect is by presenting the
intermediate results only to the moderator (Salo, 1995). Therefore, it should be emphasized
that, in real applications, the use of a feedback mechanism should always be pondered by a
human moderator, as in some cases it may have undesirable effects.

Herrera-Viedma, Herrera, and Chiclana (2002) proposed a simple and effective feedback
mechanism. It requires as input the ranking of the alternatives for each expert and for the
group. Based on the positions of each alternative O y

k and OC
k , for the yth expert and for the

group, it generates three types of instructions:

� If OC
k − O y

k < 0, then increase (improve) evaluations associated with Xk .
� If OC

k − O y
k = 0, then do not modify evaluations associated with Xk .

� If OC
k − O y

k > 0, then decrease (worsen) evaluations associated with Xk .

When the opinions are expressed in terms of the fuzzy nondominance level of each alternative,
the use of this feedback mechanism is straightforward. It is interesting to observe that the
feedback mechanism can also be applied when the preferences are expressed in terms of fuzzy
preference relations, provided that the degree of fuzzy nondominance of the alternatives is
derived from the fuzzy preference relations, with the use of (5.35) and (7.54). Other relevant
feedback mechanisms, which admit incomplete and/or inconsistent fuzzy preference relations
as input, can be found in Herrera-Viedma et al. (2007).
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10.5 Optimal Consensus in a Fuzzy Environment

Here we present a procedure, proposed in Ben-Arieh and Chen (2006), for constructing an
optimized (and dictatorial) consensus for the results of a decision problem. By means of a
systematic adjustment of the weight associated with the opinion of each expert, the procedure
tries to construct a collective result in such a way that the level of consensus, reflected by a
specific index, is increased.

Considering that the weights determine the level of contribution of each expert to the
construction of a collective opinion, the procedure acts as a computational arbiter responsible
for determining the relevance of each opinion for the decision. It tends to penalize discordant
experts in favor of an improved consensus. It is important to stress that, in this approach, the
experts are supposed to provide their preferences just once only and the rest of the work is
left to this computational arbiter. The aggregation operator utilized to construct the collective
results should be WAM. Next, the procedure is outlined in a sequence of seven steps:

Step 1. Initialize the weight of all experts in such a way that wy = 1/v, y =
1, 2, . . . , v.

Step 2. Calculate the current level of a weighted consensus per alternative

CW(Xk) =
v∑

y=1

(

1 −
∣
∣OC

k − O y
k

∣
∣

n − 1

)

wy (10.25)

and the mean level of the weighted consensus for all alternatives

CW =

n∑

k=1
CW(Xk)

n
(10.26)

considering that OC
k correspond to the position of the kth alternative, taking into

account the collective results, and that O y
k correspond the position of the kth

alternative in the ranking derived from the results obtained by expert Ey . It is
interesting to observe in (10.25) that an expert with a high weight affects more
intensely the level of consensus than an expert with a low weight.

Step 3. If the current mean level of weighted consensus is higher than a minimum
threshold, then interrupt the process. Otherwise, go to Step 4.

Step 4. Obtain the rankings of the alternatives for some different formations of the
group of experts. Each time, one expert is eliminated from the group, as described
in Table 10.8, where the index OC−z

k represents the position of alternative Xk ,
by taking into account the collective results, obtained for a group formed by the
experts, y = 1, 2, . . . , z − 1, z + 1, . . . , v.

Step 5. Calculate the levels of consensus for v different configurations of the
group. In each configuration a particular expert is not considered as a member.
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Table 10.8 Position of each alternative in the rankings obtained for
the group without an expert

X1 X2 . . . Xn

Group E1 OC−1
1 OC−1

2 . . . OC−1
n

Group E2 OC−2
1 OC−2

2 . . . OC−2
n

. . . . . . . . . . . . . . .

Group Ev OC−v
1 OC−v

2 . . . OC−v
n

The following expression can be utilized to calculate these levels of consensus:

CWC−z(Xk) =
v∑

y=1∧y �=z

(

1 −
∣∣OC−y

k − O y
k

∣∣

n − 1

)

βy (10.27)

where

βy = wy
v∑

z=1∧z �=y
wz

Step 6. Calculate the contribution D̄z , z = 1, 2, . . . , v, of each expert for the
consensus with the use of the following expressions:

Dz(Xk) = CW(Xk) − CWC−z(Xk) (10.28)

D̄z =
n∑

k=1

Dz(Xk) (10.29)

Step 7. Adjust the weights wy , y = 1, 2, . . . , v, of all experts, in accordance with
the following expressions:

wcycle+1
y = t cycle+1

y
v∑

y=1
t cycle+1
y

(10.30)

t cycle+1
y = wcycle

y (1 + Dy)b (10.31)

In (10.31), the value of b represents the weight of the individual contribution to
the construction of a consensus. The highest value of b is associated with a faster
convergence toward a desired level of consensus.

Step 8. Obtain the new collective solution and go to Step 2.

Example 10.6. Consider that three experts solved a multicriteria decision problem which
consists of ranking four alternatives from the most important to the least important one.
Each expert solved the problem separately and the individual results are combined into a
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Table 10.9 Position of each alternative in the rankings for
each expert and for the group, at the first cycle

X1 X2 X3 X4

E1 3 4 1 2
E2 2 3 1 4
E3 4 3 1 2
Group 3 4 1 2

collective result with the use of WAM, considering equal weights for all experts, that is,
w1 = w2 = w3 = 0.333. The individual as well as the collective results, expressed in terms
of the degree of fuzzy nondominance of each alternative, are as follows:

� Expert E1:

ND1 = [0.59 0.25 1 0.85] (10.32)

� Expert E2:

ND2 = [0.89 0.41 1 0.36] (10.33)

� Expert E3:

ND3 = [0.52 0.63 1 0.85] (10.34)

� Group:

NDC = [0.63 0.43 1 0.69] (10.35)

Table 10.9 presents the rankings of the alternatives, which are derived from each individual
result and from the collective results.

In Step 1, the weights are initialized as w1 = w2 = w3 = 0.333.
In Step 2, the mean level of consensus is calculated by considering the rankings of the

alternatives for each expert and for the group, by applying (10.25) and (10.26):

CW(X1) =
(

1 − |3 − 3|
3

)
0.33 +

(
1 − |2 − 3|

3

)
0.33 +

(
1 − |4 − 3|

3

)
0.33 = 0.77

(10.36)

CW(X2) =
(

1 − |4 − 4|
3

)
0.33 +

(
1 − |3 − 4|

3

)
0.33 +

(
1 − |3 − 4|

3

)
0.33 = 0.77

(10.37)

CW(X3) =
(

1 − |1 − 1|
3

)
0.33 +

(
1 − |1 − 1|

3

)
0.33 +

(
1 − |1 − 1|

3

)
0.33 = 1

(10.38)
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Table 10.10 Position of each alternative in the rankings for the
group without an expert, at the first cycle

X1 X2 X3 X4

Group-E1 2 4 1 3
Group-E2 3 4 1 2
Group-E3 2 4 1 3

CW(X4) =
(

1 − |2 − 2|
3

)
0.33 +

(
1 − |4 − 2|

3

)
0.33 +

(
1 − |2 − 2|

3

)
0.33 = 0.55

(10.39)

CW = 0.77 + 0.77 + 1 + 0.55

4
= 0.77 (10.40)

In Step 3, as the current mean level of consensus is lower than 0.9, the process is directed to
Step 4.

In Step 4, the collective results are recalculated for three different formations of the group.
In each formation, a particular expert is excluded from the group. Table 10.10 shows the final
rankings of the alternatives, obtained for the group without considering a different expert
each time.

In Step 5, the levels of consensus for the group, without considering a particular expert, are
calculated. The obtained results are shown in Table 10.11.

In Step 6, the contribution of each expert is calculated by applying (10.19) and (10.20), by
taking into account the data from Table 10.11. The obtained results are shown in Table 10.12.

In Step 7, by applying (10.21) and (10.22) with b = 2, the weights are updated as

w1 = 0.58

1.06
= 0.55 (10.41)

w2 = 0.15

1.06
= 0.14 (10.42)

w3 = 0.33

1.06
= 0.31 (10.43)

Table 10.11 Levels of consensus for the group without considering
a particular expert, at the first cycle

X1 X2 X3 X4

Group-E1 0.67 0.67 1 0.67
Group-E2 0.83 0.83 1 1
Group-E3 0.83 0.83 1 0.67
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Table 10.12 Contribution of each expert to the consensus, at the first cycle

X1 X2 X3 X4 D̄y

D1(Xk) 0.11 0.11 0 0.11 0.33
D2(Xk) −0.06 −0.06 0 −0.22 −0.33
D3(Xk) −0.06 −0.06 0 0.11 0

In Step 8, the new collective results are obtained, using WAM with the weights calculated in
Step 6:

NDC = [0.63 0.39 1 0.78] (10.44)

In Step 2, the current level of consensus per alternative is calculated with the use of (10.15)
and (10.16), as follows:

CW(X1) =
(

1 − |3 − 3|
3

)
0.55 +

(
1 − |2 − 3|

3

)
0.14 +

(
1 − |4 − 3|

3

)
0.31 = 0.85

(10.45)

CW(X2) =
(

1 − |4 − 4|
3

)
0.55 +

(
1 − |3 − 4|

3

)
0.14 +

(
1 − |3 − 4|

3

)
0.31 = 0.85

(10.46)

CW(X3) =
(

1 − |1 − 1|
3

)
0.55 +

(
1 − |1 − 1|

3

)
0.14 +

(
1 − |1 − 1|

3

)
0.31 = 1

(10.47)

CW(X4) =
(

1 − |2 − 2|
3

)
0.55 +

(
1 − |4 − 2|

3

)
0.14 +

(
1 − |2 − 2|

3

)
0.31 = 0.91

(10.48)

CW = 0.85 + 0.85 + 1 + 0.91

4
= 0.901 (10.49)

In Step 3, as the current mean level of consensus is considered satisfactory, the process is
interrupted. In this example, it is interesting to observe that the level of the weighted consensus
increases but the individual results, as well as the collective result, are kept constant. Thus,
the achieved consensus may be considered artificial, as it is based on the negligence of some
experts when calculating the level of weighted consensus. But it is important to make clear that
such a result does not follow a rule. In some cases, it may be possible to modify the collective
result with the use of this procedure (and, obviously, to improve the level of consensus).

10.6 Consensus Schemes in Fuzzy Environment

This section presents three consensus schemes which can be utilized with the different
techniques for the multicriteria analysis of 〈X, R〉 models described in Chapter 7. The first
consensus scheme to be presented here requires the preferences of the experts to be expressed
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as fuzzy estimates. This consensus scheme is named the consensus scheme based on fuzzy
estimates (CSFE). The second consensus scheme to be described requires the preferences of
the experts to be expressed in terms of nonreciprocal fuzzy preference relations. This means
that, if each expert utilizes a different preference format to express their opinions, then it is
necessary to make use of adequate transformation functions to translate all information to
nonreciprocal fuzzy preference relations, which is taken as a common format for associating
and comparing opinions. Here, this consensus scheme is named the consensus scheme based
on fuzzy preference relations (CSFPR). The third consensus scheme to be described here
requires the preferences to be expressed as the ordering from the most important alternative to
the least important alternative. Here, it is named the consensus scheme based on the ranking
of alternatives (CSRA).

It should be mentioned that the three consensus schemes admit computational components
for executing supervision functions that are usually delegated to a human moderator. In their
description, it is assumed that the variable cycle indicates the current iteration; and the variable
elast is a vector utilized to store the index of the expert requested to update his/her opinion, at
each cycle. Further, it is also considered that they require a human moderator to specify three
input parameters, namely:

� minconsensus: this defines the minimum acceptable level of consensus;
� maxcycles: this defines for how many cycles, at most, the discussion should persist;
� maxreviews: this stores the maximum number of times each expert can be successively

invited by the moderator to review his/her opinion.

These input parameters should be specified by considering some important aspects of the
process. In order to prevent the discussion from taking a longer time than expected (or
allocated), it may be necessary to consider more than one stopping condition to interrupt the
discussion. As indicated in Ekel et al. (2009), in general, the overall discussion process is
interrupted when any of the following conditions is fulfilled:

� an acceptable consensus level among the specialists has been achieved;
� the previously specified maximum number of iterations has been achieved;
� the same expert remains as the most discordant one after a specific number of subsequent

iterations and the moderator cannot persuade this expert to change his/her opinion;
� in real-time applications, the allotted time has expired and the process is then interrupted.

With the consideration of a stopping condition besides the minimum acceptable level of
consensus, such as, for example, the maximum number of iterations (maxcycles), the parameter
minconsensus can have a high value, such as 0.8 ≤ minconsensus ≤ 1. In this way, when the
group takes a long time to achieve an acceptable level of consensus, other stopping conditions
guarantee a better distribution of time over all the subjects under discussion.

The parameter maxreviews is utilized in situations when an expert remains as the least
concordant member of the group for several subsequent cycles. Under these circumstances, it
is interesting to invite this expert to justify his/her current position. If he/she has the persuasive
ability, maybe the other experts can be convinced to change their opinions. However, in
such a case, it becomes necessary to give other members of the group the chance to update
their respective opinions. Indeed, whenever possible, it is important to give all experts an
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opportunity to review their respective opinions, at least once. Otherwise, the discussion may
be polarized by just a small group of experts. Depending on the proportion between the values
of the parameters maxcycles and maxreviews, some experts may have no opportunity to review
their opinions. In this way, a priori, the value of maxcycles should be higher than or equal to
the product of the value of the parameter maxreviews and the size of the group.

Next, CSFE is summarized as a stepwise guidance procedure by assuming that all experts
provide their opinions in terms of fuzzy estimates: F y

p (Xk), k = 1, 2, . . . , n; y = 1, 2, . . . , v;
p = 1, 2, . . . , q. In this way, the following steps must be repeated for each alternative and
each criterion.

10.6.1 Guidance Procedure of CSFE

Step 1. Initialize cycle = 1 and ask the moderator to specify the weight wz

for each expert, as well as the input parameters minconsensus, maxcycles, and
maxreviews.

Step 2. Collect the opinion of each expert concerning only the pth criterion and
the kth alternative.

Step 3. Aggregate the individual estimates in a temporary collective opinion
FC

p (Xk) with the use of the aggregation operator given by (9.1).

Step 4. Calculate the consensus level within group members by means of (10.5).

Step 5. If the maximum number of cycles or a minimum level of consensus is
achieved, then go to Step 10. If no stopping condition is satisfied, then go to
Step 6.

Step 6. Calculate the concordance level for each specialist with the use of (10.4).

Step 7. Identify the least concordant expert and verify, in vector elast, if he/she
has been the least concordant expert for the last maxreviews cycles. If this is true,
repeat Step 7 for the second least concordant expert and so on (in order to avoid
the same expert being excessively requested).

Step 8. Add 1 to the value of variable cycle, store the index of the expert selected
in Step 7 in elast(cycle), and invite this expert to update his/her opinion.

Step 9. Collect the opinion of the selected expert and go to Step 3.

Step 10. Interrupt the procedure. The output data is the current collective fuzzy
estimate.

Example 10.7. Consider the use of CSFE to construct a collective evaluation of an alternative
X1 for a group of four experts.

In Step 1, the variable cycle is initialized as 1; the input parameters are fixed as
minconsensus = 0.6, maxcycles = 10, maxreviews = 1 and the weights of the three experts
are set as w1 = w2 = w3 = w4 = 0.25.

In Step 2, the experts express their evaluations as F1(X1) = {0.25, 0.4, 0.6, 0.75}, F2(X1) =
{0.5, 0.65, 0.85, 1}, F3(X1) = {0.5, 0.65, 0.85, 1}, F4(X1) = {0, 0.15, 0.35, 0.5}.
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Table 10.13 Level of concordance and of consensus, reported at the first iteration

S1,C
FE S2,C

FE S3,C
FE S4,C

FE Consensus

Concordance 0.80 0.52 0.52 0.36 0.55

In Step 3, the collective estimate, obtained using (9.1), is given by FC (X1) =
{0.31, 0.46, 0.66, 0.81}.

In Step 4, by applying (10.5), we obtain the level of consensus as 0.55 and, in Step 5, as
none of the stopping conditions is satisfied, we go to Step 6.

In Step 6, the level of concordance between the collective and each individual opinion is
calculated using (10.4), with β = 0.5, as given in Table 10.13.

In Step 7, E4 is identified as the least concordant expert in accordance with the data shown
in Table 10.13.

In Step 8, the variable cycle is incremented (cycle = 2); the index of E4 is stored in the
vector elast(2) and this particular expert is invited to review his/her opinion.

In Step 9, E4 provides a new evaluation F4(X1) = {0.25, 0.4, 0.6, 0.75} and the process
goes directly to Step 3.

In Step 3, the collective fuzzy estimate is updated to FC (X1) = {0.38, 0.53, 0.73, 0.88}.
In Step 4, by applying (10.5), we obtain the level of consensus as 0.64 (refer to

Table 10.14 for the level of concordance and of consensus reported at the second iteration),
which the moderator considered an acceptable degree of consensus. In this way, the session
is terminated.

Next, the guidance procedure of CSFPR is described, considering that the discussion is to be
divided into independent sessions focused on each criterion separately.

10.6.2 Guidance Procedure of CSFPR

Step 1. Initialize cycle = 1 and ask the moderator to specify the weight wz for each
expert, as well as the input parameters minconsensus, maxcycles, maxreviews.

Step 2. Collect the opinion of each specialist. All experts are supposed to evaluate
or compare all alternatives using any preference format among utility values,
ordering of all alternatives, fuzzy or linguistic estimates, multiplicative preference
relations, fuzzy preference relations.

Step 3. If any expert expresses his/her preferences in terms of a multiplicative
preference relation or of a fuzzy preference relation, then verify whether the sup-
plied relations are consistent. The process should not continue until a satisfactory

Table 10.14 Level of concordance and of consensus, reported at the second iteration

E1 E2 E3 E4 Consensus

Concordance level 0.63 0.65 0.65 0.63 0.64
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level of consistency has been achieved. As discussed in Chapter 9, a priori, weak
transitivity is the minimum acceptable level of consistency.

Step 4. Make the required data transformation to the fuzzy preference relation,
with the use of proper transformation functions, as discussed in Chapter 6. The
supplied information must be converted to fuzzy preference relations, which is
accepted as the generic form for comparing and associating individual opinions,
as well as for performing the multicriteria analysis later on.

Step 5. Calculate the collective opinion. The individual opinions are aggregated
into a temporary collective opinion, expressed as a fuzzy preference relation,
using WAM, WGM, min, or OWA. Note that the selection of the most appropriate
aggregation operator should be made by the group, before the beginning of the
discussion.

Step 6. Verify whether the collective opinion satisfies weak transitivity. If not, an
analyst can modify the collective fuzzy preference relation in order to improve its
consistency using an algorithm such as the one described in Chapter 6.

Step 7. Calculate the consensus level achieved per relation given by (10.11).

Step 8. If the maximum number of cycles or a minimum level of consensus has
been achieved, then go to Step 13. If none of the stopping conditions are satisfied,
then go to Step 9.

Step 9. Calculate the concordance level for each expert with the use of (10.7) and
(10.8), in such a way that a table like Table 10.15 can be fulfilled.

Step 10. Identify the least concordant expert and verify, in vector elast, if he/she
has been the least concordant expert for the last maxreviews cycle. If this is true,
repeat Step 10 for the second least concordant expert and so on (in order to prevent
any expert from being excessively demanded).

Step 11. Add 1 to the value of variable cycle, store the index of the expert selected
in Step 10 in elast(cycle), and invite this expert to update his/her opinion.

Step 12. Collect the opinion of the selected expert. If this expert expresses his/her
opinion in terms of a fuzzy preference relation or a multiplicative preference
relation, then go to Step 3. Otherwise, go directly to Step 4.

Step 13. Interrupt the procedure. The output data are the current collective fuzzy
preference relation.

Table 10.15 Levels of concordance per alternative and per relation for each expert

Concordance level per alternative E1 E2 . . . Ev

X1 SX1,C
1 SX2,C

1 . . . SXv,C
1

X2 SX1,C
2 SX2,C

2 . . . SXv,C
2

. . . . . . . . . . . . . . .

Xn SX1,C
n SX2,C

n . . . SXv,C
n

Concordance level per relation SR1,C SR2,C . . . SRv,C
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Example 10.8. Consider the use of CSFPR to construct a collective preference for a group
of three experts. Here, three alternatives are to be compared by taking into account the
criterion F1.

In Step 1, the variable cycle is initialized as 1; the input parameters are fixed as
minconsensus = 0.75, maxcycles = 5, maxreviews = 1 and the weights of the three experts
are set as w1 = w2 = w3 = 0.333.

In Step 2, the experts express their preferences, each one using a different preference format:

� Preferences of E1, expressed in terms of fuzzy estimates

F1
1 (X1) = {0.85, 0.95, 1, 1}, F1

1 (X2) = {0.6, 0.7, 0.8, 0.9},
F1

1 (X3) = {0.35, 0.45, 0.55, 0.65} (10.50)

� Preferences of E2, expressed in terms of the utility values (defined on an interval scale) of
each alternative:

U2
1 = [

0.8 0.7 0.7
]

(10.51)

� Preferences of E3, expressed in terms of the order of each alternative:

O3
1 = [

3 1 2
]

(10.52)

In Step 3, as no experts have expressed their respective opinions in terms of a fuzzy preference
relation or a multiplicative preference relation, it is not necessary to check the consistency of
the provided preferences.

In Step 4, with the use of adequate transformation functions, all preferences are transformed
to the following nonreciprocal fuzzy preference relations:

� Preferences of E1:

R1
1 =

⎡

⎣
1 1 1

0.25 1 1
0 0.25 1

⎤

⎦ (10.53)

� Preferences of E2:

R2
1 =

⎡

⎣
1 1 1

0.9 1 1
0.9 1 1

⎤

⎦ (10.54)

� Preferences of E3:

R3
1 =

⎡

⎣
1 0 0.25
1 1 1
1 0.25 1

⎤

⎦ (10.55)
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Table 10.16 Levels of consensus per alternative and per relation,
reported during the first cycle

X1 X2 X3

Consensus level per alternative 0.65 0.74 0.75
Consensus level per relation 0.71

In Step 5, a temporary collective fuzzy preference relation is constructed with the use
of WAM:

RC
1 =

⎡

⎣
1 0.67 0.75

0.71 1 1
0.63 0.5 1

⎤

⎦ (10.56)

In Step 6, it is verified that RC
1 satisfies the weak-transitivity condition.

In Step 7, the consensus level per relation is calculated. Table 10.16 presents the consensus
level per alternative, obtained with (10.10), as well as the consensus level per relation, given
by (10.11).

In Step 8, as none of the stopping conditions have been satisfied, the process moves to
Step 9.

In Step 9, the concordance level between the individual opinions and the collective opinion
is calculated for the individual alternative and the relation, with the use of (10.7) and (10.8).
However, here we applied (10.7) and (10.8) to the version of the collective fuzzy preference
relation given by (10.57), which was derived from (10.56), in accordance with the procedure
described in Section 10.3:

RMC =
⎡

⎣
1 0.67 1
1 1 1

0.63 0.5 1

⎤

⎦ (10.57)

Table 10.17 contains the levels of concordance per alternative and per relation.
In Step 10, E3 is selected as the least concordant expert, based on the concordance level per

relation of each expert given in Table 10.17.
In Step 11, the variable cycle is incremented (cycle = 2); the index of E3 is stored in the

vector elast(2) and this particular expert is invited to review his/her opinion.

Table 10.17 Levels of concordance per alternative and per relation for each expert, reported during
the first cycle

Concordance level per alternative E1 E2 E3

X1 0.57 0.82 0.55
X2 0.67 0.77 0.77
X3 0.78 0.81 0.66
Concordance level per relation 0.67 0.80 0.66
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Table 10.18 Levels of consensus per alternative and per relation,
at the second cycle

X1 X2 X3

Consensus level per alternative 0.77 0.76 0.82
Consensus level per relation 0.78

In Step 12, the new preferences of E3 are collected and the process goes directly to Step 4:

O3
1 = [2 1 3] (10.58)

In Step 4, the fuzzy preference relation R3
1 is updated yielding

R3
1 =

⎡

⎣
1 0.25 1
1 1 1

0.25 0 1

⎤

⎦ (10.59)

In Step 5, the temporary collective fuzzy preference relation is updated to

RC
1 =

⎡

⎣
1 0.75 1

0.72 1 1
0.38 0.42 1

⎤

⎦ (10.60)

In Step 6, it is verified that RC
1 satisfies the weak transitivity condition.

In Step 7, the new consensus level per relation is calculated with the use of (10.11). Table
10.18 shows the consensus level per alternative and the consensus level per relation.

In Step 8, as the level of consensus is considered satisfactory, the process moves on to
Step 13.

In Step 13, the procedure is terminated and the output data is the collective fuzzy preference
relation given by (10.60).

It should be indicated that an important aspect to be considered in the choice between CSFE
and CSFPR is associated with the fact that CSFE is less efficient than CSFPR when the
experts can have and do have very different levels of exigency. This aspect is analyzed in the
following example.

Example 10.9. Let us consider that two experts, namely E1 and E2, the former being more
exigent than the latter, evaluated the alternatives X1, X2, and X3 using the set of five normalized
fuzzy values S(F)={very low, low, middle, high, very high} shown in Figure 7.31. The
collected evaluations are as follows:

� Preferences of E1: F1(X1) =very low, F1(X2) =low, F1(X3) =middle.
� Preferences of E2: F2(X1) =middle, F2(X2) = high, F2(X3) =very high.
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0.5

0 0.25 0.5 0.75 1

X1 X2 X3

Expert E1F

R

0.5

0 0.25 0.5 0.75 1

X1 X2 X3

Expert E2F

R

0.5

0 0.25 0.5 0.75 1

X1 X2 X3

GroupF

R

Figure 10.1 Example of evaluations through fuzzy estimates that result in similar fuzzy preference
relations.

If we consider w1 = w2, (9.1) yields the collective fuzzy estimates shown in Figure 10.1. As
can be seen in Figure 10.1, there is a significant difference between the collective opinion and
each individual opinion.

On the other hand, if we use (6.14) and (6.15), we obtain the fuzzy preference relations
associated with the preferences of each expert, that is,

R1 =
⎡

⎣
1 0.5 0
1 1 0.5
1 1 1

⎤

⎦ (10.61)

and

R2 =
⎡

⎣
1 0.5 0
1 1 0.5
1 1 1

⎤

⎦ (10.62)
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which are identical to each other. Therefore, aggregation of (10.61) and (10.62) with the use of
any aggregation operator among WAM, WGM, OWA, or min results in a fuzzy preference rela-
tion which is equal to (10.61) and (10.62). In this situation, the use of CSFPR allows the group
to interrupt the discussion process sooner under a higher level of consensus on the collective
fuzzy preference relation. On the other hand, although the use of CSFE may make difficult for
the group to achieve an acceptable level of consensus, its use may be helpful, when it is desirable
to achieve a consensus on the evaluation of each alternative individually (this sort of application
usually requires the definition of a standardized level of exigency for every criterion).

Now let us consider the guidance procedure of CSRA. In practice, the most substantial
difference between CSFPR and CSRA lies in the fact that whereas CSFPR aims at constructing
a consensus on the preferences per criterion, CSRA aims at constructing a consensus on the
final ranking of the alternatives. Actually, it should be noted that, when CSFPR is utilized, an
acceptable level of consensus may be reached on the preferences per criterion, but the level
of consensus on the final ranking of the alternatives is not necessarily satisfactory. CSFPR
is particularly useful when the group is formed by experts coming from different areas, who
are invited to participate in the decision process by comparing or evaluating the alternatives
only for the criteria related to their respective areas of expertise. On the other hand, CSRA
is particularly useful when all experts can solve the overall problem individually and it is
important to guarantee a consensus on the final results rather than on the preferences of the
experts. It is interesting also to note that CSRA may admit a considerable level of discordance
among the experts for a criterion with a low level of importance for the final decision.

10.6.3 Guidance Procedure of CSRA

Step 1. Initialize cycle = 1 and ask the moderator to specify the weight wz of each
expert as well as the input parameters minconsensus, maxcycles, maxreviews.

Step 2. Collect the opinion of each specialist. All experts are supposed to evaluate
or compare all alternatives using any preference format among utility values,
ordering of all alternatives, fuzzy or linguistic estimates, multiplicative preference
relations, fuzzy preference relations. It should be indicated that the same expert
is also allowed to express his/her opinions using a different preference format for
each criterion.

Step 3. If any expert expresses his/her preferences in terms of a multiplicative
preference relation or a fuzzy preference relation, then verify whether the supplied
relations are consistent. The process should not continue until a satisfactory level
of consistency has been achieved.

Step 4. Make the required data transformations to the fuzzy preference relation,
with the use of proper transformation functions, as discussed in Chapter 6. The
supplied information must be translated to fuzzy preference relations, which is
regarded as the generic format for carrying out the multicriteria analysis for
each expert.

Step 5. Run the multicriteria analysis for each expert individually. It is important to
ensure that all members of the group select the same method for the multicriteria
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analysis. As discussed in Chapter 9, the use of different methods makes it difficult
to meet a satisfactory level of consensus on the results, even if all experts have
achieved a perfect consensus on their opinions about the alternatives.

Step 6. Calculate the collective results. The individual results, which correspond to
the fuzzy nondominance level of each alternative, are aggregated into a temporary
collective result, using WAM, WGM, min, or OWA.

Step 7. Calculate the mean level of concordance for each expert by using (10.17)
and (10.18) subsequently.

Step 8. Calculate the mean level of consensus achieved by the group using (10.19)
followed by (10.20).

Step 9. If the maximum number of cycles or the minimum consensus level has
been reached, then move on to Step 13. If none of the conditions are met, then go
to Step 10.

Step 10. Identify the least concordant expert and verify, in vector elast, if he/she
has been the least concordant expert for the last maxreviews cycles. If this holds,
repeat Step 10 for the second least concordant expert and so on (in order to prevent
any expert from being excessively demanded).

Step 11. Increment the variable cycle, store the index of the expert selected in Step
10 in elast(cycle), and invite this expert to update his/her opinion.

Step 12. Collect the opinion of the selected expert. If this expert expresses his/her
opinion in terms of a fuzzy preference relation or a multiplicative preference
relation, then go to Step 3. Otherwise, go directly to Step 4.

Step 13. Interrupt the discussion. The output data of the consensus scheme is the
current collective result. But, if the current level of consensus is still unacceptable,
then the moderator should consider the possibility of activating the procedure for
constructing an optimized consensus.

Example 10.10. Let us consider that a multicriteria decision problem, which involves ranking
four alternatives considering three criteria, is to be solved by three experts using the first
technique for multicriteria analysis, described in Chapter 7. All experts are supposed to solve
the problem individually, following the guidance procedure of CSRA.

In Step 1, the moderator sets the values of the input parameters as minconsensus = 0.9,
maxcycles = 10, maxreviews = 2 and the weights of the three experts are set as w1 = w2 =
w3 = 0.333.

In Step 2, each expert expresses their preferences, taking into account all criteria and using
different preference formats:

� Preferences of E1, expressed in terms of the following fuzzy estimates:

F1
1 (X1) = {0.85, 0.95, 1, 1}, F1

1 (X2) = {0.35, 0.45, 0.55, 0.65},
F1

1 (X3) = {0.35, 0.45, 0.55, 0.65}, F1
1 (X4) = {0.1, 0.2, 0.3, 0.4}
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F1
2 (X1) = {0.1, 0.2, 0.3, 0.4}, F1

2 (X2) = {0.35, 0.45, 0.55, 0.65}
F1

2 (X3) = {0.6, 0.7, 0.8, 0.9}, F1
2 (X4) = {0.35, 0.45, 0.55, 0.65}

F1
3 (X1) = {0.35, 0.45, 0.55, 0.65}, F1

3 (X2) = {0.6, 0.7, 0.8, 0.9}
F1

3 (X3) = {0.6, 0.7, 0.8, 0.9}, F1
3 (X4) = {0.85, 0.95, 1, 1} (10.63)

� Preferences of E2, expressed in terms of the interval-scale utility values of each alternative:

U2
1 = [0.9 0.6 0.5 0.3], U2

2 = [0.5 0.7 0.9 0.6], U2
3 = [0.4 0.3 0.9 0.6]

(10.64)
� Preferences of E3, expressed in terms of the order of each alternative by taking into account

each criterion separately:

O3
1 = [1 2 3 4], O3

2 = [4 3 2 1], O3
3 = [4 3 1 2] (10.65)

In Step 3, as none of the experts have expressed their opinion in terms of a fuzzy preference
relation or a multiplicative preference relation, it is not necessary to check the consistency of
the provided information.

In Step 4, with the use of adequate transformation functions, all preferences are transformed
to the nonreciprocal fuzzy preference relations as shown below:

� Preferences of E1:

R1
1 =

⎡

⎢⎢
⎣

1 1 1 1
0 1 1 1
0 1 1 1
0 0.25 0.25 1

⎤

⎥⎥
⎦ , R1

2 =

⎡

⎢⎢
⎣

1 0.25 0 0.25
1 1 0.25 1
1 1 1 1
1 1 0.25 1

⎤

⎥⎥
⎦ ,

R1
3 =

⎡

⎢⎢
⎣

1 0.25 0.25 0
1 1 1 0.25
1 1 1 0.25
1 1 1 1

⎤

⎥⎥
⎦ (10.66)

� Preferences of E2:

R2
1 =

⎡

⎢⎢
⎣

1 1 1 1
0.54 1 1 1
0.43 0.82 1 1
0.25 0.54 0.67 1

⎤

⎥⎥
⎦ , R2

2 =

⎡

⎢⎢
⎣

1 0.67 0.43 0.82
1 1 0.67 1
1 1 1 1
1 0.82 0.54 1

⎤

⎥⎥
⎦ ,

R2
3 =

⎡

⎢⎢
⎣

1 1 0.33 0.67
0.82 1 0.25 0.54

1 1 1 1
1 1 0.54 1

⎤

⎥⎥
⎦ (10.67)
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� Preferences of E3:

R3
1 =

⎡

⎢⎢
⎣

1 1 1 1
0.33 1 1 1
0.17 0.33 1 1

0 0.17 0.33 1

⎤

⎥⎥
⎦ , R3

2 =

⎡

⎢⎢
⎣

1 0.33 0.17 0
1 1 0.33 0.17
1 1 1 0.33
1 1 1 1

⎤

⎥⎥
⎦ ,

R3
3 =

⎡

⎢
⎢
⎣

1 0.33 0 0.17
1 1 0.17 0.33
1 1 1 1
1 1 0.33 1

⎤

⎥
⎥
⎦ (10.68)

In Step 5, the multicriteria analysis is carried out for each expert following the first technique.
It should be mentioned that when two or more alternatives are considered nondistinguishable,
the weight of each criterion is differentiated in a subsequent analysis as λ1 = 0.25, λ2 = 0.35,
and λ3 = 0.4. The individual results are:

� Expert E1:

ND1 = [0.59 0.25 1 0.85] (10.69)

� Expert E2:

ND2 = [0.90 0.43 1 0.54] (10.70)

� Expert E3:

ND3 = [0.52 0.60 1 0.80] (10.71)

In Step 6, by calculating the collective result with the use of WAM, we obtain:

NDc = [0.67 0.43 1 0.73] (10.72)

Table 10.19 presents the rankings of the alternatives, which are derived from each individual
result and from the collective results.

Table 10.19 Position of each alternative in the rankings for each
expert and for the group, at the first cycle

X1 X2 X3 X4

E1 3 4 1 2
E2 2 4 1 3
E3 4 3 1 2
Group 3 4 1 2
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Table 10.20 Levels of concordance for each expert, at the first cycle

SOy,C
1 SOy,C

2 SOy,C
3 SOy,C

4 SOy,C

E1 1 1 1 1 1
E2 0.42 1 1 0.42 0.71
E3 0.4 0.42 1 1 0.71

In Step 7, the level of concordance for each individual alternative and for the group of
alternatives is calculated with the use of (10.17) with b = 0.5 and (10.18). Table 10.20 shows
the values of SOy,C

k for y = 1, 2, 3 and k = 1, 2, . . . , 4, and the average level of concordance
SOy,C for y = 1, 2, 3.

In Step 8, the mean level of consensus achieved by the group is calculated using (10.19)
and (10.20), as can be seen in Table 10.21.

In Step 9, as none of the stopping conditions are satisfied, the discussion process is
not interrupted.

In Step 10, although E2 and E3 are identified to be the least concordant experts (which
results from the data shown in Table 10.20), only E2 is invited to review his/her opinion.

In Step 11, the value of the variable cycle is updated to 2, the index of E2 is stored in
elast(2), and E2 is invited to review his/her opinion.

Considering the fact that OC
1 − O2

1 > 0, OC
2 − O2

2 = 0, OC
3 − O2

3 = 0, and OC
4 − O2

4 < 0,
the advice mechanism generates the following recommendations: E2 should increase the
evaluations of X4, decrease the evaluations of X1, and maintain the evaluations of X2

and X3.
In Step 12, the modified preferences of E2 are collected:

U2
1 = [0.9 0.6 0.5 0.75] (10.73)

As can be seen, only the preferences related to the criterion F1 are modified. The unique
change made by the expert is related to X4 and is in accordance with the information supplied
by the advice mechanism.

In Step 4, the fuzzy preference relation R2
1 is updated to (all other fuzzy preference relations

remain the same)

R2
1 =

⎡

⎢⎢
⎣

1 1 1 1
0.54 1 1 0.74
0.43 0.82 1 0.6
0.74 1 1 1

⎤

⎥⎥
⎦ (10.74)

Table 10.21 Levels of consensus for each individual alternative for
the set of alternatives

CO1 CO2 CO3 CO4 CO

0.61 0.81 1 0.81 0.81
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Table 10.22 Position of each alternative in the rankings for each expert
and for the group, reported at the second cycle

X1 X2 X3 X4

E1 3 4 1 2
E2 3 4 1 2
E3 4 3 1 2
Group 3 4 1 2

In Step 5, the multicriteria analysis is performed again for E2 and the following results are
obtained:

ND2 = [0.90 0.43 1 0.94] (10.75)

In Step 6, the collective results are updated to

NDC = [0.67 0.43 1 0.86] (10.76)

The new rankings of the alternatives are presented in Table 10.22.
In Step 7, the mean level of concordance is obtained for each specialist with the use of

(10.17), where b = 0.5. Table 10.23 shows the values of SOy,C
k for y = 1, 2, 3 and k = 1,2, . . . ,

4, and the average level of concordance SOy,C for y = 1, 2, 3.
In Step 8, the mean level of consensus achieved by the group is calculated using (10.19)

and (10.20). The results are shown in Table 10.24.
As the current level of consensus is higher than minconsensus, in Step 9, the procedure goes

to Step 13 and the discussion is interrupted.

It is important to emphasize that, although it is possible to achieve a satisfactory level of
consensus in the given examples, it is not always possible or easy to achieve a satisfactory
level of consensus for the collective results. In real-world applications, the most common
obstacles for achieving consensus are as follows:

� The discordant experts may not want to modify their opinions and may not present convincing
arguments in favor of their positions.

� The experts may modify their opinions in the opposite direction recommended by the advice
mechanism. Indeed, as discussed in Section 10.4, the moderator should cautiously utilize
the feedback mechanism, as it may produce undesirable effects on the discussion process.

Table 10.23 Levels of concordance for each expert, at the second cycle

SOy,C
1 SOy,C

2 SOy,C
3 SOy,C

4 SOy,C

E1 1 1 1 1 1
E2 1 1 1 1 1
E3 0.42 0.42 1 1 0.71
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Table 10.24 Levels of consensus for each individual alternative for the set of alternatives

CO1 CO2 CO3 CO4 CO

0.81 0.81 1 1 0.905

10.7 An Application Related to the Balanced Scorecard Methodology

The balanced scorecard methodology (BSC) is a tool for strategic management, developed by
Kaplan and Norton (1992), which can help organizations to translate strategic objectives into
relevant performance measures, that is, to put strategy into action. It does so by integrating
four perspectives, each one addressing a main question (Bremser and White, 2000):

� Financial perspective: In order to succeed financially, how should the organization perform
for its shareholders?

� Customer perspective: In order to achieve its vision, how should the organization be
manifested to its customers?

� Internal business perspective: In order to satisfy customers as well as shareholders, in
which business processes should the organization stand out?

� Learning and growth perspective: How can the organization sustain its ability of changing
and improving?

In this context, let us consider that the enterprise’s board of directors, which includes four
members (E1, E2, E3, E4), is to plan the development of strategy initiatives for the following
five years. Five possible strategies have been marked:

� Strategy X1: to outsource certain activities traditionally done in-house.
� Strategy X2: to design products based on customer requirements.
� Strategy X3: to adopt new technologies to be used in the production phase, in order to

increase product quality.
� Strategy X4: to improve after-sales service quality by widening the service network.
� Strategy X5: to adopt new technologies to be used in the production phase, in order to

improve the production process by solving some of the existing operational problems.

It is necessary to compare these projects to select the most important ones, as well as order them
from the point of view of their importance, taking into account the four criteria (categories)
suggested by the BSC (note that all of them are of the maximization type):

� F1: financial perspective,
� F2: the customer satisfaction,
� F3: internal business process perspective,
� F4: learning and growth perspective.

All experts are invited to make a complete analysis of the problem. It is assumed that all experts
selected the first technique for multicriteria analysis described in Chapter 7. When two or more
alternatives are considered indistinguishable, the weight of each criterion is differentiated in
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a subsequent analysis as λ1 = 0.4, λ2 = 0.25, λ3 = 0.2 and λ4 = 0.15. The CSRA consensus
scheme is utilized to construct a consensual decision for the group, as described next.

In Step 1, the moderator sets minconsensus = 0.80, maxcycles = 10, maxreviews = 2. The
professionals are considered of the same importance, except for E1, whose opinions are judged
to be more important. Therefore, the parameters wy are set as w1 = 0.2, w2 = 0.3, w3 = 0.3,
and w4 = 0.2.

In Step 2, each expert expresses their preferences using a different preference format:

� Preferences of E1, expressed in terms of the fuzzy preference relations:

R1
1 =

⎡

⎢⎢⎢⎢
⎣

0.5 0.9 0.7 0.8 0.9
0.1 0.5 0.25 0.4 0.7
0.3 0.75 0.5 0.6 0.8
0.2 0.6 0.4 0.5 0.8
0.1 0.3 0.2 0.2 0.5

⎤

⎥⎥⎥⎥
⎦

, R1
2 =

⎡

⎢⎢⎢⎢
⎣

0.5 0.2 0.15 0.3 0.8
0.8 0.5 0.4 0.6 0.9

0.85 0.6 0.5 0.7 0.9
0.7 0.4 0.3 0.5 0.9
0.2 0.1 0.1 0.1 0.5

⎤

⎥⎥⎥⎥
⎦

(10.77)

R1
3 =

⎡

⎢⎢⎢⎢
⎣

0.5 0.2 0.1 0.1 0.1
0.8 0.5 0.3 0.2 0.1
0.9 0.7 0.5 0.4 0.3
0.9 0.8 0.6 0.5 0.4
0.9 0.9 0.7 0.6 0.5

⎤

⎥⎥⎥⎥
⎦

, R1
4 =

⎡

⎢⎢⎢⎢
⎣

0.5 0.9 0.95 0.8 0.85
0.1 0.5 0.7 0.3 0.4
0.05 0.3 0.5 0.15 0.2
0.2 0.7 0.85 0.5 0.6
0.15 0.6 0.8 0.4 0.5

⎤

⎥⎥⎥⎥
⎦

� Preferences of E2, expressed in terms of the ranking of all alternatives by taking into account
each criterion separately:

O2
1 = [1 4 2 3 5], O2

2 = [4 2 1 3 5],

O2
3 = [5 4 3 2 1], O2

4 = [1 4 5 2 3]
(10.78)

� Preferences of E3, expressed in terms of the fuzzy estimates, selected from the set of
linguistic estimates shown in Figure 10.2:

F3
1 (X1) = very large, F3

1 (X2) = small, F3
1 (X3) = large, F3

1 (X4) = middle,

F3
1 (X5) = very small

0.25 0.5 0.75 1

0.625

1

F

very small small middle large very large

R

Figure 10.2 Membership functions of normalized fuzzy values.
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F3
2 (X1) = small, F3

2 (X2) = large, F3
2 (X3) = very large, F3

2 (X4) = middle,

F3
2 (X5) = small

F3
3 (X1) = very small, F3

3 (X2) = small, F3
3 (X3) = middle, F3

3 (X4) = large,

F3
4 (X5) = very large

F3
4 (X1) = very large, F3

4 (X2) = small, F3
4 (X3) = very small, F3

4 (X4) = middle,

F3
4 (X5) = large (10.79)

� Preferences of E4, expressed in terms of the ratio-scale utility values of all alternatives:

U4
1 = [0.8 0.4 0.7 0.6 0.1], U4

2 = [0.3 0.8 0.9 0.75 0.25]

U4
3 = [0.15 0.2 0.4 0.7 0.95], U4

4 = [0.65 0.2 0.1 0.2 0.3]

In Step 3, it is verified that the fuzzy preference relations R1
1, R1

2, R1
3, and R1

4 satisfy weak
transitivity.

In Step 4, with the use of adequate transformation functions, all preferences are transformed
to nonreciprocal fuzzy preference relations:

� Preferences of E1:

R1
1 =

⎡

⎢⎢
⎢⎢
⎣

1 1 1 1 1
0.11 1 0.33 0.67 1
0.43 1 1 1 1
0.25 1 0.67 1 1
0.11 0.43 0.25 0.25 1

⎤

⎥⎥
⎥⎥
⎦

, R1
2 =

⎡

⎢⎢
⎢⎢
⎣

1 0.25 0.18 0.43 1
1 1 0.67 1 1
1 1 1 1 1
1 0.67 0.42 1 1

0.25 0.11 0.11 0.11 1

⎤

⎥⎥
⎥⎥
⎦

R1
3 =

⎡

⎢
⎢⎢⎢
⎣

1 0.25 0.11 0.11 0.11
1 1 0.43 0.25 0.11
1 1 1 0.67 0.42
1 1 1 1 0.67
1 1 1 1 1

⎤

⎥
⎥⎥⎥
⎦

, R1
4 =

⎡

⎢
⎢⎢⎢
⎣

1 1 1 1 1
0.11 1 1 0.43 0.67
0.05 0.43 1 0.18 0.25
0.25 1 1 1 1
0.18 1 1 0.67 1

⎤

⎥
⎥⎥⎥
⎦

(10.80)

� Preferences of E2:

R2
1 =

⎡

⎢⎢⎢
⎢
⎣

1 1 1 1 1
0.13 1 0.25 0.38 1
0.38 1 1 1 1
0.25 1 0.38 1 1

0 0.38 0.13 0.25 1

⎤

⎥⎥⎥
⎥
⎦

, R2
2 =

⎡

⎢⎢⎢
⎢
⎣

1 0.25 0.13 0.38 1
1 1 0.38 1 1
1 1 1 1 1
1 0.38 0.25 1 1

0.38 0.13 0 0.25 1

⎤

⎥⎥⎥
⎥
⎦

R2
3 =

⎡

⎢⎢
⎢⎢
⎣

1 0.38 0.25 0.13 0
1 1 0.38 0.25 0.13
1 1 1 0.38 0.25
1 1 1 1 0.38
1 1 1 1 1

⎤

⎥⎥
⎥⎥
⎦

, R2
4 =

⎡

⎢⎢
⎢⎢
⎣

1 1 1 1 1
0.13 1 1 0.25 0.38
0.25 0.38 1 0.13 0.25
0.38 1 1 1 1
0.25 1 1 0.38 1

⎤

⎥⎥
⎥⎥
⎦

(10.81)
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� Preferences of E3:

R3
1 =

⎡

⎢⎢⎢
⎢
⎣

1 1 1 1 1
0 1 0 0.63 1

0.63 1 1 1 1
0 1 0.63 1 1
0 0.63 0 0 1

⎤

⎥⎥⎥
⎥
⎦

, R3
2 =

⎡

⎢⎢⎢
⎢
⎣

1 0 0 0.63 1
1 1 0.63 1 1
1 1 1 1 1
1 0.63 0 1 1
1 0 0 0.63 1

⎤

⎥⎥⎥
⎥
⎦

R3
3 =

⎡

⎢⎢
⎢⎢
⎣

1 0.63 0 0 0
1 1 0.63 0 0
1 1 1 0.63 0
1 1 1 1 0.63
1 1 1 1 1

⎤

⎥⎥
⎥⎥
⎦

, R3
4 =

⎡

⎢⎢
⎢⎢
⎣

1 1 1 1 1
0 1 1 0.63 0
0 0.63 1 0 0
0 1 1 1 0.63

0.63 1 1 1 1

⎤

⎥⎥
⎥⎥
⎦

(10.82)

� Preferences of E4:

R4
1 =

⎡

⎢⎢
⎢⎢
⎣

1 1 1 1 1
0.25 1 0.32 0.44 1
0.76 1 1 1 1
0.56 1 0.73 1 1
0.01 0.06 0.02 0.03 1

⎤

⎥⎥
⎥⎥
⎦

, R4
2 =

⎡

⎢⎢
⎢⎢
⎣

1 0.14 0.11 0.16 1
1 1 0.79 1 1
1 1 1 1 1
1 0.88 0.69 1 1

0.69 0.10 0.08 0.11 1

⎤

⎥⎥
⎥⎥
⎦

R4
3 =

⎡

⎢⎢
⎢⎢
⎣

1 0.56 0.14 0.04 0.02
1 1 0.25 0.08 0.04
1 1 1 0.32 0.18
1 1 1 1 0.54
1 1 1 1 1

⎤

⎥⎥
⎥⎥
⎦

, R4
4 =

⎡

⎢⎢
⎢⎢
⎣

1 1 1 1 1
0.09 1 1 1 0.44
0.02 0.25 1 0.25 0.11
0.09 1 1 1 0.44
0.21 1 1 1 1

⎤

⎥⎥
⎥⎥
⎦

(10.83)

In Step 5, the problem is solved for each expert individually, using the first technique for
multicriteria analysis, described in Chapter 7. The degrees of fuzzy nondominance of each
alternative, obtained by considering separately the preferences of each expert, are as follows:

� Expert E1:

ND1 = [0.86 0.58 0.75 1 0.44] (10.84)

� Expert E2:

ND2 = [0.88 0.51 0.88 0.82 0.53] (10.85)

� Expert E3:

ND3 = [0.85 0.38 1 0.74 0.38] (10.86)
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Table 10.25 Positions of the alternatives for each expert and for the group, at the first cycle

X1 X2 X3 X4 X5

E1 2 4 3 1 5
E2 1.5 5 1.5 3 4
E3 2 4.5 1 3 4.5
E4 2 5 4 1 3
Group 1 5 3 2 4

� Expert E4:

ND4 = [0.95 0.2 0.56 1 0.58] (10.87)

In Step 6, the collective result is calculated with the use of WAM:

NDC = [0.88 0.42 0.83 0.87 0.48] (10.88)

Table 10.25 shows the ranking of the alternatives for each expert and for the group, in
accordance with the results shown above.

In Step 7, the mean level of concordance is calculated for each specialist using (10.17) with
b = 1 and (10.18) (refer to Table 10.26).

In Step 8, the level of consensus achieved by the group is calculated using (10.19) and
(10.20). Refer to Table 10.27 for the level of consensus for each alternative and the mean level
of consensus for the set of alternatives.

In Step 9, as none of the stopping conditions have been satisfied, the procedure goes on to
Step 10.

In Step 10, the least concordant expert is E3, as confirmed in Table 10.26.
In Step 11, the value of variable cycle is updated to 2, E3 is invited to review his/her opinion,

and his/her index is stored in elast(2).
Considering the fact that OC

1 − O3
1 < 0, OC

2 − O3
2 > 0, OC

3 − O3
3 > 0, OC

4 − O3
4 < 0 and

OC
5 − O3

5 < 0, the advice mechanism generates the following recommendations: E3 should
increase the evaluations of X1, X4 and X5, and decrease the evaluations of X2 and X3.

In Step 12, the modified preferences of E3 are collected:

F3
3(X3) = very small (10.89)

Table 10.26 Levels of concordance for each expert at the first cycle

SOy,C
1 SOy,C

2 SOy,C
3 SOy,C

4 SOy,C
5 SOy,C

E1 0.75 0.75 1 0.75 0.75 0.8
E2 0.88 1 0.63 0.75 1 0.85
E3 0.75 0.88 0.5 0.75 0.88 0.75
E4 0.75 1 0.75 0.75 0.75 0.8
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Table 10.27 Levels of consensus for each individual alternative for the set of alternatives

CO1 CO2 CO3 CO4 CO5 CO

0.76 0.91 0.72 0.75 0.78 0.78

In Step 4, the fuzzy preference relation R3
3 is updated to

R2
2 =

⎡

⎢⎢⎢
⎢
⎣

1 0.63 1 0 0
1 1 1 0 0
1 0.63 1 0 0
1 1 1 1 0.63
1 1 1 1 1

⎤

⎥⎥⎥
⎥
⎦

(10.90)

In Step 5, the multicriteria analysis is performed again for E3 and the following result is
obtained:

ND2 = [1 0.38 0.95 0.74 0.38] (10.91)

In Step 6, the collective result is updated to

NDC = [0.93 0.42 0.81 0.87 0.48] (10.92)

Table 10.28 shows the ranking of the alternatives for each expert and for the group, in
accordance with the results shown above.

In Step 7, the levels of concordance are calculated using (10.17) with b = 1 and (10.18).
Table 10.29 shows the values obtained for SOy,C and for SOy,C

k where y = 1, 2, 3, 4 and
k = 1, 2, . . . , 5.

In Step 8, the mean level of consensus achieved by the group is calculated using (10.19)
and (10.20), as can be seen in Table 10.30.

In Step 9, as the current level of consensus is already viewed as satisfactory, the procedure
is transferred to Step 13 and then terminated. The output is the collective result given by
(10.92).

Table 10.28 Rankings of the alternatives for each expert and for the group, at the second cycle

X1 X2 X3 X4 X5

E1 2 4 3 1 5
E2 1.5 5 1.5 3 4
E3 1 4.5 2 3 4.5
E4 2 5 4 1 3
Group 1 5 3 2 4
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Table 10.29 Levels of concordance for each expert, at the second cycle

SOy,C
1 SOy,C

2 SOy,C
3 SOy,C

4 SOy,C
5 SOy,C

E1 0.75 0.75 1 0.75 0.75 0.8
E2 0.88 1 0.63 0.75 1 0.85
E3 1 0.88 0.75 0.75 0.88 0.85
E4 0.75 1 0.75 0.75 0.75 0.8

10.8 Conclusions

This chapter considered two different approaches which can be utilized for forming a consen-
sual result for discrete multicriteria decision-making problems in a group environment. They
are the consensus schemes and the procedures for constructing an optimized consensus.

Three different consensus schemes were presented. These are the consensus scheme based
on fuzzy estimates (CSFE), consensus scheme based on fuzzy preference relations (CSFPR),
and consensus scheme based on the ranking of the alternatives (CSRA). As discussed in the
chapter, they find different applications in practice.

CSRA aims at constructing a consensus on the final ranking of the alternatives. It is partic-
ularly useful when all experts can solve the entire problem individually and it is important to
guarantee a consensus on the final results, rather than a consensus on the preferences of the
experts.

On the other hand, CSFPR aims at constructing a consensus on the preferences per criterion.
When CSFPR is used, it may be that an acceptable level of consensus is reached on the
preferences per criterion, but the level of consensus on the final ranking of the alternatives
is not necessarily satisfactory. CSFPR is particularly useful when the group is formed of
experts from different areas, who are invited to contribute their opinions over the alternatives,
considering only the criteria related to their respective areas of expertise.

Finally, CSFE allows the discussion to be organized in such a way that each alternative is
considered in an independent session, which may involve different groups of experts. However,
as indicated in the text, CSFE can be utilized only when the experts involved in the decision-
making process have similar levels of exigency or are supposed to follow certain standards
of exigency. Otherwise, it may be impossible to obtain a consensus on the evaluation of each
alternative.

Regardless of the type of consensus scheme being utilized, it is not always possible or easy
to achieve a satisfactory level of consensus on the collective results. In real-world applica-
tions, some discordant experts may be reluctant to modify their respective opinions. To deal
with these cases, we consider the use of a procedure for obtaining an optimized consensus.
It consists of an algorithm for modifying the weight of each opinion in the construction of
the aggregated opinion, in such a way that the level of consensus, reflected by a weighted

Table 10.30 Levels of consensus for each individual alternative for the set of alternatives

CO1 CO2 CO3 CO4 CO5 CO

0.85 0.91 0.78 0.75 0.85 0.83
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index of consensus, is increased until an acceptable level has been reached. However, it
is important to mention that, in some cases (as can be confirmed by the numerical exam-
ple included in Section 10.5), the collective result remains unmodified even after running
this procedure.

In the last section, the use of CSRA was demonstrated through an application example,
which consists of solving a multicriteria problem generated with the use of the balanced
scorecard methodology for strategic planning in an organization.

Exercises

Problem 10.1. Consider that four experts are invited to compare four alternatives. Given
the individual opinions expressed in terms of fuzzy preferences, verify which expert is the
least concordant member of the group. Utilize WAM to obtain the collective fuzzy preference
relation and assume that all professionals are of the same importance, that is, wy = 0.2, y = 1,
2, . . . , 5:

R1
1 =

⎡

⎢⎢
⎣

1 0 0.5 1
1 1 1 1
1 0.44 1 1

0.53 0 0 1

⎤

⎥⎥
⎦ , R2

1 =

⎡

⎢⎢
⎣

1 0.53 0.54 1
1 1 1 1
1 1 1 1
1 0.61 0.51 1

⎤

⎥⎥
⎦ , R3

1 =

⎡

⎢⎢
⎣

1 0 0.64 1
1 1 1 1
1 0.72 1 1
1 0 0.53 1

⎤

⎥⎥
⎦ ,

R4
1 =

⎡

⎢⎢
⎣

1 0.63 0.63 1
1 1 1 1
1 1 1 1

0.63 0 0 1

⎤

⎥⎥
⎦ , R5

1 =

⎡

⎢⎢
⎣

1 0.41 1 1
1 1 1 1
1 0.32 1 1

0.6 0 0.64 1

⎤

⎥⎥
⎦

Problem 10.2. Calculate the current level of consensus per alternative and per relation among
the experts discussed in Problem 10.1.

Problem 10.3. Consider that four experts are invited to solve a multicriteria problem. It
consists of ranking four alternatives in accordance with their importance. The individual
results obtained by the experts are as follows:

� Expert E1:

ND1 = [0.5 0.6 0.45 0.7]

� Expert E2:

ND2 = [0.45 0.75 0.5 0.6]

� Expert E3:

ND3 = [0.5 0.45 0.3 0.6]
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� Expert E4:

ND4 = [0.6 0.5 0.4 0.55]

� Expert E5:

ND5 = [0.5 0.4 0.65 0.5]

Verify which expert is the least concordant in the group is. Utilize WAM to obtain the collective
fuzzy preference relation and assume that all professionals are of the same importance, that
is, wy = 0.2, y = 1, 2, . . . , 5.

Problem 10.4. Calculate the current level of consensus per alternative and the mean level of
consensus, considering the preferences given by the experts in Problem 10.3.

Problem 10.5. Execute each step of the procedure to construct an optimized consensus
described in Section 10.5, in order to obtain an optimized consensus. Consider the preferences
given by the five experts discussed in Problem 10.3.
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Concordance index 296–8, 302
Consensus 13, 293
Consensus index 296–8, 302, 305
Consensus scheme

Definition 295, 309–10
Guidance procedures 311–12,

318
Consistency

of fuzzy preference relation 148,
163

of multiplicative preference relation 55,
137

under group settings 275
Continuous decision space 10
Continuous models of multicriteria

decision-making 103
Cooperative decision-making 12, 264,

293
Criteria

Hurwicz 248, 250
Laplace 248, 250
Savage 248, 250
Wald 248, 250

Criterion 10
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Decision-maker (DM) 2–4
Decision-making 2, 4, 6, 9
Decision-making problem 2, 4, 6, 9
Decision-making process 2–3, 13
Decision space 7, 10, 278
Decision support 4, 6, 12
Decision support system 4, 6, 12
Decision uncertainty region 6–8
Decision variable 10
Dictatorial consensus 305
Discrete decision space 10, 278

Efficient solution 104–5
Extension principle 84

Feasible solutions 6
Fuzzy arithmetic 87
Fuzzy C-Means (FCM) 76
Fuzzy estimate 66, 160
Fuzzy number 28
Fuzzy objective function 76
Fuzzy preference relation 11, 141, 163,

202
Fuzzy quantifier 222, 224
Fuzzy relation 47, 49

Cartesian product 49, 52
Cylindrical extension 54
Equivalence 57
Operations 51
Projection 53
Reconstruction 55
Transposition 52

Fuzzy set
Cardinality 34
Convexity 33
Core 32
Equality 35
Equalization 80
Interpretation 22, 24
Normality 31
Normalization 32
Operations 41
Support 32
Specificity 37

Fuzzy set of non-dominated alternatives 204
Fuzzy solution 113

General scheme of multicriteria decision
making under uncertainty 253

Generalized preference relation 167
Goal programming 111
Goals 10, 111
Group decision environment 264
Group decision process 278
Group decision-making 11
Group decision-making problem 263

Harmonious solutions 112
Human participation 6, 9
Human-oriented interfaces 17

Ill-structured problem 4
Importance factor 110, 116, 207, 228, 268
Importance of objective function 110, 124
Importance weight of experts 268, 294,305
Incommensurable unit 9
Incomparability relation 142–3, 145–6,

150
Indifference relation 142–3, 145–6, 150
Individual decision-making 6, 12
Information granularity 74
Information of qualitative character 16
Interactive approach 106
Intersection of fuzzy sets 44
Interval coefficients 254
Interval scale 158

Large preference relation 142
Lexicographic goal programming 112
Lexicographic character 207
Linguistic variable 29, 160
LPτ -sequence 253

Measure of fuzziness
Energy 36
Entropy 36

Membership function 26
Definition 23
Elicitation 63
Gaussian 27
Triangular 26
Trapezoidal 27

Method of global criterion 112
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Method of successive concessions 111
Moderator 8, 294–5, 304
Modified criterion

Hurwicz 253
Laplace 252
Savage 252
Wald 252

Modified payoff matrix 251
Multiattribute decision-making 10–11, 202
Multicriteria decision-making 3, 9–10, 103,

193
Multicriteria power and energy shortage

allocation 120, 122
Multicriteria Resource Allocation 115
Multiobjective decision making 10, 103
Multiperson and Multiattribute Aggregation

Modes 265
Multiple criteria 2, 9
Multiplicative preference relation 70, 161

Negation 46
Non-compensatory behavior 124, 221,

272
Non-cooperative decision making 12, 264
Non-dominated solutions 104–5
Non-local search 116
Nonstrict preference relation 142
Nonreciprocal fuzzy preference relation

163–4
Normalization of objective functions

107–8

Objective function 6–7, 103
Objective space 104–5, 278
Objectives 9–10, 112
Operational research 3, 5
Optimal solution 3, 6–7
Optimization 6
Optimized (dictatorial) consensus 305
Ordered weighted average 203, 221, 271,

272, 274
Orlovsky choice function 203, 205
Outranking relation 203, 216

Pareto-optimal front 105
Pareto-optimal solution set 105

Pareto-optimal solutions 105
Particular risks 252–3
Payoff matrices 247–8
Positive association principle 146
Preference elicitation

of fuzzy estimates 160
of multiplicative preference relations

161–2
of utility functions 157
Process 155

Preference formats 156
Fuzzy preference relation 163
Fuzzy estimates 160
Multiplicative preference relation 70,

161
Ordering of alternatives 156
Utility values 157

Preference function 226
Preference structures

Definition 145
Construction 146

Principle of justifiable granularity 73
Principle of optimality 107
Principle of just compromise 110
Principle of uniform optimality 110
Priorities of objective functions 107
Probabilistic methods15
Promethee 216
Proximity relation 58

Quantifier guided dominance degree 224
Quantifier guided non-dominance degree

224

Ranking of the alternatives 203, 230, 266
Ratio scale 158, 161
Real-time decision support 5
Reciprocity (reciprocality)

multiplicative 70,
additive 140

Regret 249–50
Representation theorem 39
Representative combinations of initial data

247–8
Risk 249–50, 252
Risk matrix 250
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Scenario 247, 253
Semi-structured problem 4–5
State of nature 249
Strict preference relation 141–3, 146, 203
Structured problem 4

Triangular norm 43
T-conorm 45
T-norm 44
Transformation function

Definition 172
For additive reciprocal fuzzy preference

relation 172
For nonreciprocal fuzzy preference

relation 180
Transitivity

Additive transitivity 163, 173, 176–8,
186, 273, 275,

Multiplicative transitivity 70, 162, 164,
174, 176, 178, 185–6

Min-transitivity 56, 141, 150
T-transitivity 140–1
Weak-transitivity 141, 149–50, 205, 271,

275

Uncertainty 2, 5–6
Uncertainty factor 2
Uncertainty of goals 7, 9
Uncertainty of information 6, 14
Union of fuzzy sets 45
Unstructured problems 4, 5

Weak domination 104
Weak Pareto optimal solutions 105
Weak preference relation 142
Weighted arithmetic mean 270–2, 274
Weighted geometric mean 271–2, 274

< X, M > models 11, 17, 103, 107
< X, R > models 11, 17, 202–3




